




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版·数学·七年级(下)第4章三角形4.1认识三角形第3课时三角形的中线、角平分线1.了解三角形的角平分线、中线的概念并掌握其性质,会用工具准确画出三角形的角平分线、中线.2.学会用数学知识解决实际问题的能力,发展应用和自主探究意识,并培养动手实践能力与合作精神.学习目标在三角形中,连接一个顶点与它对边中点的线段,叫作这个三角形的中线(median).AE是BC边上的中线.三角形的“中线”BACABE=ECE合作探究新知一三角形的中线(1)在纸上画出一个锐角三角形,确定它的中线.
你有什么方法?它有多少条中线?它们有怎样的位置关系?议一议三条中线,交于一点(2)钝角三角形和直角三角形的中线又是怎样的?折一折,画一画,并与同伴交流.
三角形的三条中线交于一点,这个交点就是三角形的重心.要点归纳典例精析例1
在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长比△ADC的周长大2cm,则BA=________.提示:将△ABD与△ADC的周长之差转化为边长的差.7cm思考在一张薄纸上任意画一个三角形,你能设法画出它的一个内角的平分线吗?你能通过折纸的方法得到它吗?新知二三角形的角平分线BAC用量角器画最简便,用圆规也能.
在一张纸上画出一个一个三角形并剪下,将它的一个角对折,使其两边重合.折痕AD即为三角形的∠A的平分线.ABCAD三角形的角平分线的定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.12ABCD注意:“三角形的角平分线”是一条线段.∠1=∠2每人准备锐角三角形、钝角三角形和直角三角形纸片各一个.
(1)你能分别画出这三个三角形的三条角平分线吗?(2)你能用折纸的办法得到它们吗?(3)在每个三角形中,这三条角平分线之间有怎样的位置关系?做一做三角形的三条角平分线交于同一点.三角形角平分线的性质解:∵AD是△ABC的角平分线,∠BAC=68°,
∴∠DAC=∠BAD=34°.
在△ABD中,∠B+∠ADB+∠BAD=180°,∴∠ADB=180°-∠B-∠BAD=180°-36°-34°=110°.
例2
如图,在△ABC中,∠BAC=68°,∠B=36°,AD是△ABC的一条角平分线,求∠ADB的度数.ABDC1.AD是ΔABC的角平分线(如图),那么
∠BAC=∠BAD;2.AE是ΔABC的中线(如图),那么
BC=BE.ADCBABCE22课堂练习3.如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交
AC于E,F为AB上一点,CF交AD于H,判断下列说法的正误.⌒⌒ABCDE12FGH(1)AD是△ABE的角平分线()(2)BE是△ABD边AD上的中线()(3)BE是△ABC边AC上的中线()××√4.在ΔABC中,CD是中线,已知BC-AC=5cm,ΔDBC
的周长为25cm,求ΔADC的周长.ADBC解:∵CD是△ABC的中线,∴BD=AD,∴△DBC的周长=BC+BD+CD=25cm,则BD+CD=25-BC.∴△ADC的周长=AD+CD+AC
=BD+CD+AC
=25-BC+AC
=25-(BC-AC)=25-5=20cm.5.如图,AE是△ABC的角平分线.已知∠B=45°,∠C=60°,求∠BAE和∠AEB的度数.ABCE解:∵AE是△ABC的角平分线,∵∠BAC+∠B+∠C=180°,∴∠BAC=180°-∠B-∠C=180°-45°-60°=75°,∴∠BAE=37.5°.∵∠AEB=∠CAE+∠C,∠CAE=∠BAE=37.5°,∴∠AEB=37.5°+60°=97.5°.∴∠CAE=∠B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程索赔常见问题解答
- 度假酒店监控设备招标3篇
- 定制化投资服务合同3篇
- 全方位会务策划服务协议3篇
- 建筑施工物业管理合同2篇
- 建筑公司全权委托3篇
- 代收货代表协议3篇
- 竹林种植机械化技术与效益分析考核试卷
- 木雕工艺技术与创作考核试卷
- 紧固件行业数字化设计与仿真分析考核试卷
- (二模)济宁市2025年4月高考模拟考试地理试卷
- 首都医科大学附属北京安贞医院招聘考试真题2024
- 抽化粪池合同协议
- 中医养生馆运营方案中医养生馆策划书
- (二模)宁波市2024-2025学年第二学期高考模拟考试 英语试卷(含答案)+听力音频+听力原文
- 高考备考:100个高考常考易错的文言实词(翻译+正误辨析)
- 软件项目交付管理制度
- 食品安全自查、从业人员健康管理、进货查验记录、食品安全事故处置等保证食品安全的规章制度
- 物理实验通知单记录单初二上
- 认识浮力+阿基米德原理
- 防止电力生产重大事故地二十五项反措
评论
0/150
提交评论