专题34随机事件的概率及其计算小题专练B卷-2023届高考数学重难点_第1页
专题34随机事件的概率及其计算小题专练B卷-2023届高考数学重难点_第2页
专题34随机事件的概率及其计算小题专练B卷-2023届高考数学重难点_第3页
专题34随机事件的概率及其计算小题专练B卷-2023届高考数学重难点_第4页
专题34随机事件的概率及其计算小题专练B卷-2023届高考数学重难点_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第=page1212页,共=sectionpages1212页专题34随机事件的概率及其计算小题专练B卷一、单选题1.有甲、乙、丙三个工厂生产同一型号的产品,甲厂生产的次品率为,乙厂生产的次品率为,丙厂生产的次品率为,生产出来的产品混放在一起.已知甲、乙、丙三个工厂生产的产品数分别占总数的,,,任取一件产品,则取得产品为次品的概率是(

)A. B. C. D.2.某中学的学生积极参加体育锻炼,其中有的学生喜欢足球或游泳,的学生喜欢足球,的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为(

)A. B. C. D.3.甲、乙两个箱子里各装有个大小形状都相同的球,其中甲箱中有个红球和个白球,乙箱中有个红球和个白球.先从甲箱中随机取出一球放入乙箱中,再从乙箱中随机取出一球,则取出的球是红球的概率为(

)A. B. C. D.4.设某芯片制造厂有甲、乙两条生产线均生产规格的芯片,现有块该规格的芯片,其中甲、乙生产的芯片分别为块,块,且乙生产该芯片的次品率为,现从这块芯片中任取一块芯片,若取得芯片的次品率为,则甲厂生产该芯片的次品率为(

)A. B. C. D.5.从个小孩,个中年人,个老人组成的人中随机抽取人做一个游戏,则这人恰好为个小孩,个中年人,个老人的概率为(

)A. B. C. D.6.从正方体的个顶点和中心中任选个,则这个点恰好构成三棱锥的概率为(

)A. B. C. D.7.甲,乙,丙三人报考志愿,有,,三所高校可供选择,每人限报一所,则恰有两人报考同一所大学的概率为(

)A. B. C. D.8.年是脱贫攻坚战决胜之年.凝心聚力打赢脱贫攻坚战,确保全面建成小康社会.为了如期完成脱贫攻坚目标任务,某县安排包括甲、乙在内的个单位对本县的个贫困村进行精准帮扶,要求每个村至少安排一个单位,每个单位只帮扶一个村,则甲、乙两个单位被安排在同一贫困村的概率为(

)A. B. C. D.二、多选题9.甲罐中有个红球、个黑球,乙罐中有个红球、个黑球,先从甲罐中随机取出一球放入乙罐,以表示事件“由甲罐取出的球是红球”,再从乙罐中随机取出一球,以表示事件“由乙罐取出的球是红球”,则.(

)A. B. C. D.10.某校团委组织“喜迎二十大、永远跟党走、奋进新征程”学生书画作品比赛,经评审,评出一、二、三等奖作品若干一、二等奖作品数相等,其中男生作品分别占,,现从获奖作品中任取一件,记“取出一等奖作品”为事件,“取出男生作品”为事件,若,则(

)A. B.一等奖与三等奖的作品数之比为

C. D.11.甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球先从甲罐中随机取出一球放入乙罐,分别以,和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是(

)A. B.

C.事件与事件相互独立 D.,,是两两互斥的事件12.在道题中有道理科题和道文科题,不放回地依次抽取道题,则下列结论正确的是(

)A.第次抽到理科题的概率为

B.第次和第次都抽到理科题的概率为

C.第次抽到理科题,第次抽到文科题的概率为

D.在第次抽到理科题的条件下,第次抽到理科题的概率为三、填空题13.伟大出自平凡,英雄来自人民.在疫情防控一线,北京某大学学生会自发从学生会名男生和名女生骨干成员中选出人作为队长率领他们加入武汉社区服务队,用表示事件“抽到的名队长性别相同”,表示事件“抽到的名队长都是男生”,则

.14.甲、乙两人进行乒乓球比赛,采用“局胜制”,即先胜局为胜方,比赛结束已知甲每局获胜的概率均为,则甲开局获胜并且最终以取胜的概率为

.15.很多网站利用验证码来防止恶意登录,以提升网络安全某马拉松赛事报名网站的登录验证码由,,,,中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”如已知某人收到了一个“递增型验证码”,则该验证码的首位数字是的概率为

.16.某学校在甲乙丙三个地区进行新生录取,三个地区的录取比例分别为,,现从这三个地区等可能抽取一个人,此人被录取的概率是

.17.我国历法中将一年分为春、夏、秋、冬四个季节,每个季节有六个节气,如夏季包含立夏、小满、芒种、夏至、小暑以及大暑.某美术学院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,现四位同学抽签确定各自完成哪个季节中的六幅彩绘,在制签及抽签公平的前提下,甲没有抽到绘制春季六幅彩绘任务且乙没有抽到绘制夏季六幅彩绘任务的概率为

.18.一猎人带着一把猎枪到山里去打猎,猎枪每次可以装发子弹,当他遇见一只野兔时,开第一枪命中野免的概率为,若第一枪没有命中,猎人开第二枪,命中野免的概率为,若第二枪也没有命中,猎人开第三枪,命中野兔的概率为,若发子弹都没打中,野兔就逃跑了,则已知野兔被击中的条件下,是猎人开第二枪命中的概率为

19.某校老师要求参赛学生从星期一到星期四每天学习个汉字及正确注释,每周五对一周内所学汉字随机抽取个进行检测一周所学的汉字每个被抽到的可能性相同,若已知抽取个进行检测的字中有一个字是最后一天学习的,则所抽取的个进行检测的字中恰有个是后两天学习过的汉字的概率为

.20.现有个相同的袋子,里面均装有个除颜色外其他无区别的小球,第个袋中有个红球,个白球现将这些袋子混合后,任选其中一个袋子,并且从中连续取出三个球每个取后不放回,若第三次取出的球为白球的概率是,则

答案和解析1.【答案】

解:甲厂生产的次品率为,乙厂生产的次品率为,丙厂生产的次品率为,

甲、乙、丙三个工厂生产的产品数分别占总数的,,,

取得产品为次品的概率.

故本题选D.

2.【答案】

解:由题意可得如下所示韦恩图:

所求比例为:,

故答案为:.故答案为:.

3.【答案】

解:设事件表示从甲箱中随机取出一红球放入乙箱中,事件表示从甲箱中随机取出一白球放入乙箱中,设事件表示:从甲箱中随机取出一球放入乙箱中,再从乙箱中随机取出一球,则取出的球是红球,

则有:,,,,

所以.

故选B.

4.【答案】

解:以,分别表示取得的这块芯片是由甲厂、乙厂生产的,表示取得的芯片为次品,

则,,设,,

则由全概率公式得,

,解得.

故选B.

5.【答案】

解:从个小孩,个中年人,个老人组成的人中随机抽取人做一个游戏,基本事件总数,这人恰好为个小孩,个中年人,个老人包含的基本事件个数:,则这人恰好为个小孩,个中年人,个老人的概率为:.

故选:.

6.【答案】

解:从正方体的个顶点和中心中任取个,有个结果,

个点恰好构成三棱锥分两种情况:

从正方体的个顶点中取个点,共有个结果,在同一个平面的有个,构成三棱锥有个;

从正方体的个顶点中取个与中心构成三棱锥有个,

故从正方体的个顶点和中心中任选个,

则这个点恰好构成三棱锥的个数为,

故所求概率.

故选:.

7.【答案】

解:甲,乙,丙三人报考志愿,有,,三所高校可供选择,每人限报一所,则所有的基本事件个数为个,

恰有两人报考同一所大学所包含的基本事件个数为:个,

故恰有两人报考同一所大学的概率为.

故选D.

8.【答案】

解:个单位对本县的个不同的贫困村进行帮扶,分三大类:按,,分,有种情况.按,,分,有种情况.按,,分,有种情况.故共有种情况.其中甲,乙两个单位安排在同一贫村可能的情况同上分析,有种情况.故甲、乙两个单位安排在同一贫困村的概率为.

故选B.

9.【答案】

解:对于选项A,由题意可知:,故选项A正确;

对于选项C,因为表示事件“从甲罐取出的球是红球”,设表示事件“从甲罐取出的球是黑球”,可得,

,,

故选项C正确;

对于选项B,结合选项C可得,,故选项B错误

对于选项D,结合选项C可得,,故选项D正确.

故选:.

10.【答案】

解:设一、二、三等奖作品的件数分别为,,,,则,则一、二、三等奖作品的件数之比为,因此B正确;

因为一等奖男生作品占,所以A正确,,

因此D正确,

,所以C错误.

故选ABD.

11.【答案】

解:因为事件,和任意两个都不能同时发生,所以,,是两两互斥的事件,

因为,

所以,

所以,于是事件与事件不相互独立.

故选:.

12.【答案】

解:在道题中有道理科题和道文科题,不放回地依次抽取道题,第次抽到理科题的概率,故A正确;

B.第次和第次都抽到理科题的概率:,故B正确;

C.第次抽到理科题,第次抽到文科题的概率为:,故C不正确;

D.设事件表示“第次抽到理科题”,事件表示“第次抽到理科题”则,,

在第次抽到理科题的条件下,第次抽到理科题的概率:,故D正确.

故选ABD.

13.【答案】

解:由已知得,,

故答案为:.

14.【答案】

解:甲开局获胜并且最终以取胜的情况共种:胜负胜胜,胜胜负胜,

故所求概率为.

故答案为.

15.【答案】

解:基本事件的总数为,其中该验证码的首位数字是的包括的事件个数为.

该验证码的首位数字是的概率.

故答案为:.

16.【答案】

解:记事件表示此人来自甲地区,事件表示此人来自乙地区,事件表示此人来自丙地区,事件:此人被录取;

,,,

故答案为.

17.【答案】

解:某美术学院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,

现四位同学抽签确定各自完成哪个季节中的六幅彩绘,

在制签及抽签公平的前提下,基本事件总数,

甲没有抽到绘制春季六幅彩绘任务且乙没有抽到绘制夏季六幅彩绘任务包含的基本事件个数:

甲没有抽到绘制春季六幅彩绘任务且乙没有抽到绘制夏季六幅彩绘任务的概率为.

故答案为:.

18.【答案】

解:设“猎人第一枪击中野兔”,“猎人第二枪击中野兔”,

“猎人第三枪击中野兔”,“野兔被击中”,

则互斥,且,,,

因此

所以.

故答案为.

19.【答案】

解:设进行检测的个汉字中至少有一个是最后一天学习的为事件,恰有个是后两天学习过的汉字为事件,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论