云南省曲靖市市第一中学2023年高一数学文测试题含解析_第1页
云南省曲靖市市第一中学2023年高一数学文测试题含解析_第2页
云南省曲靖市市第一中学2023年高一数学文测试题含解析_第3页
云南省曲靖市市第一中学2023年高一数学文测试题含解析_第4页
云南省曲靖市市第一中学2023年高一数学文测试题含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市市第一中学2023年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.用秦九韶算法计算多项式

当时的值时,需要做乘法和加法的次数分别是(

)A.6,6

B.5,6

C.5,5

D.6,5参考答案:A2.已知向量=(sinα,cos2α),=(1﹣2sinα,﹣1),α∈(,),若=﹣,的值为() A. B. C. D.参考答案:C【考点】平面向量的坐标运算;三角函数中的恒等变换应用. 【专题】三角函数的图像与性质;平面向量及应用. 【分析】利用数量积运算法则、倍角公式、三角函数的基本关系式、两角和差的正切公式即可得出. 【解答】解:∵==sinα(1﹣2sinα)﹣cos2α, ∴=sinα﹣2sin2α﹣(1﹣2sin2α),化为. ∵α∈(,),∴. ∴=﹣. ∴. ∴==﹣. 【点评】本题考查了数量积运算法则、倍角公式、三角函数的基本关系式、两角和差的正切公式,属于基础题. 3.各棱长均为的三棱锥的表面积为(

)A. B. C.

D.参考答案:D4.已知函数是偶函数,且在上是单调减函数,则由小到大排列为

()A、 B、

C、 D、

参考答案:A5.有20位同学,编号从1﹣20,现在从中抽取4人的作问卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20 B.2,6,10,14 C.2,4,6,8 D.5,8,11,14参考答案:A【考点】B4:系统抽样方法.【分析】根据系统抽样的定义,判断样本间隔是否相同即可.【解答】解:根据题意编号间隔为20÷4=5,则只有A,满足条件,故选:A.6.已知函数最小正周期为,则的图象的一条对称轴的方程是(

)A.

B.

C.

D.

参考答案:A略7.已知P,A,B,C是球O的球面上的四个点,PA⊥平面ABC,,,则该球的半径为(

)A. B. C. D.参考答案:D【分析】先由题意,补全图形,得到一个长方体,则即为球的直径,根据题中条件,求出,即可得出结果.【详解】如图,补全图形得到一个长方体,则即为球的直径.又平面,,,所以,因此直径,即半径为.故选:D.8.二次函数y=x2-4x+3在区间(1,4]上的值域是

A.[-1,+∞)

B.(0,3]

C.[-1,3]

D.(-1,3]参考答案:C略9.(3分)有下列四种变换方式:①向左平移,再将横坐标变为原来的;

②横坐标变为原来的,再向左平移;③横坐标变为原来的,再向左平移;

④向左平移,再将横坐标变为原来的;其中能将正弦曲线y=sinx的图象变为的图象的是() A. ①和② B. ①和③ C. ②和③ D. ②和④参考答案:A考点: 函数y=Asin(ωx+φ)的图象变换.专题: 计算题.分析: 直接利用函数的图象的平移变换,由正弦曲线y=sinx的图象变为的图象,即可得到选项.解答: 正弦曲线y=sinx的图象向左平移,得到函数的图象,再将横坐标变为原来的,变为的图象;将正弦曲线y=sinx的图象横坐标变为原来的,得到函数y=sin2x的图象,再向左平移,变为的图象;故选A.点评: 本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.注意两种变换的方式的区别.10.已知两直线l1:x+my+3=0,l2:(m﹣1)x+2my+2m=0,若l1∥l2,则m的值为()A.0 B.﹣1或 C.3 D.0或3参考答案:A【考点】直线的一般式方程与直线的平行关系.【分析】给出的两直线方程均为一般式,直接由两直线平行和系数之间的关系列式求解m的值.【解答】解:直线l1:x+my+3=0,l2:(m﹣1)x+2my+2m=0,设A1=1,B1=m,C1=3,A2=m﹣1,B2=2m,C2=2m,∵l1∥l2,∴,即,解得:m=0.故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.求值=_________参考答案:试题分析:考点:三角函数二倍角公式12.若圆锥的侧面展开图是半径为1cm、圆心角为120°的扇形,则这个圆锥的轴截面面积等于. 参考答案:【考点】旋转体(圆柱、圆锥、圆台). 【分析】根据圆锥侧面展开图与圆锥的对应关系列方程解出圆锥的底面半径和母线长,计算出圆锥的高. 【解答】解:设圆锥的底面半径为r,母线长为l,则, 解得l=1,r=. ∴圆锥的高h==. ∴圆锥的轴截面面积S==. 故答案为:. 【点评】本题考查了圆锥的结构特征,弧长公式,属于基础题. 13.若函数f(x)=﹣a是奇函数,则实数a的值为

.参考答案:1【考点】函数奇偶性的性质.【分析】根据奇函数的结论:f(0)=0列出方程,求出a的值即可.【解答】解:因为奇函数f(x)=﹣a的定义域是R,所以f(0)=﹣a=0,解得a=1,故答案为:1.14.函数,若存在,使得,则a的取值范围是___________.参考答案:【分析】先根据的范围计算出的值域,然后分析的值域,考虑当两个值域的交集不为空集时对应的取值范围即可.【详解】因为,所以当时,因为,所以当时,由题意可知,当时,或,所以或,综上可知:.故答案为:.【点睛】本题考查根据函数值域的关系求解参数范围,难度一般.当两个函数的值域的交集不为空集时,若从正面分析参数的范围较复杂时,可考虑交集为空集时对应的参数范围,再求其补集即可求得结果.15.求

.参考答案:

16.已知=,,则=

.参考答案:略17.在如图所示的程序框图中,若U=lg?log3,V=2,则输出的S=,参考答案:

【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数S=的值,从而计算得解.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数S=的值.∵U=lg?log3=1,V=2=,∴U>V,∴S=.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当0≤x≤20时,车流速度v为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时)参考答案:19.已知正项等差数列{an}的前n项和为Sn,若,且成等比数列.(1)求{an}的通项公式;(2)设,记数列{bn}的前n项和为,求Tn.参考答案:(1);(2)【分析】(1)利用等差数列S3=12,等差中项的性质,求得a2=4,结合2a1,a2,a3+1成等比数列,得a22=2(a2-d)(a2+d+1),进而求得的通项公式;(2)确定数列的通项,利用错位相减法求数列的和.【详解】设公差为d,则∵S3=12,,即a1+a2+a3=12,∴3a2=12,∴a2=4,又∵2a1,a2,a3+1成等比数列,∴a22=2(a2-d)(a2+d+1),解得d=3或d=-4(舍去),∴an=a2+(n-2)d=3n-2(2),∴①①×得

②①-②得

,∴.【点睛】本题考查了等差数列和等比数列的性质,以及等差数列的通项公式和等比数列的求和公式,考查了数列求和的错位相减法.错位相减法适用于{}型数列,其中分别是等差数列和等比数列.20.(12分)(2014秋?晋江市校级期中)设函数,(1)求证:不论a为何实数f(x)总为增函数;(2)确定a的值,使f(x)为奇函数及此时f(x)的值域.参考答案:【考点】函数奇偶性的判断;函数的值域;函数单调性的判断与证明.

【专题】计算题;证明题.【分析】(1)∵f(x)的定义域为R,任设x1<x2,化简f(x1)﹣f(x2)到因式乘积的形式,判断符号,得出结论.(2)由f(﹣x)=﹣f(x),解出a的值,进而得到函数的解析式:.由2x+1>1,可得函数的值域.【解答】解:(1)∵f(x)的定义域为R,设x1<x2,则=,∵x1<x2,∴,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以不论a为何实数f(x)总为增函数.(2)∵f(x)为奇函数,∴f(﹣x)=﹣f(x),即,解得:a=1.∴.∵2x+1>1,∴,∴,∴所以f(x)的值域为(﹣1,1).【点评】本题考查证明函数的单调性的方法、步骤,利用奇函数的定义求待定系数的值,及求函数的值域.21.已知函数.(1)若在区间[0,2]上的最小值为,求a的值;(2)若存在实数m,n使得在区间[m,n]上单调且值域为[m,n],求a的取值范围.参考答案:(1);(2).【分析】(1)根据二次函数单调性讨论即可解决。(2)分两种情况讨论,分别讨论单调递增和单调递减的情况即可解决。【详解】(1)若,即时,,解得:,若,即时,,解得:(舍去).(2)(ⅰ)若在上单调递增,则,则,即是方程的两个不同解,所以,即,且当时,要有,即,可得,所以;(ⅱ)若在上单调递减,则,则,两式相减得:,将代入(2)式,得,即是方程的两个不同解,所以,即,且当时要有,即,可得,所以,(iii)若对称轴在上,则不单调,舍弃。综上,.22.如图,扇形AOB,圆心角AOB等于60°,半径为2,在弧上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=θ,求△POC面积的最大值及此时θ的值.参考答案:【考点】HO:已知三角函数模型的应用问题.【分析】根据CP∥OB求得∠CPO和和∠OCP进而在△POC中利用正弦定理求得PC和OC,进而利用三角形面积公式表示出S(θ)利用两角和公式化简整理后,利用θ的范围确定三角形面积的最大值.【解答】解:因为CP∥OB,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论