云南省曲靖市宣威市格宜镇第二中学2022-2023学年高三数学理测试题含解析_第1页
云南省曲靖市宣威市格宜镇第二中学2022-2023学年高三数学理测试题含解析_第2页
云南省曲靖市宣威市格宜镇第二中学2022-2023学年高三数学理测试题含解析_第3页
云南省曲靖市宣威市格宜镇第二中学2022-2023学年高三数学理测试题含解析_第4页
云南省曲靖市宣威市格宜镇第二中学2022-2023学年高三数学理测试题含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市宣威市格宜镇第二中学2022-2023学年高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量,其中,且,则向量与的夹角是(

)A.

B.

C.

D.参考答案:【知识点】向量的定义F1B,,即,,,所以,故选B.【思路点拨】,,即,即可求.2.设是等差数列的前n项和,若

(

)A.

B.

C.

D.参考答案:A3.已知点,,若向量,则向量()A.(3,-2) B.(2,-2) C.(-3,-2) D.(-3,2)参考答案:D【分析】先求得,然后利用向量的减法运算求得.【详解】依题意,,故选D.【点睛】本小题主要考查平面向量的减法运算,考查平面向量的坐标运算,属于基础题.4.如图,在△OAB中,P为线段AB上的一点,=x+y,且=2,则

()

A.x=,y=

B.x=,y=C.x=,y=

D.x=,y=参考答案:A5.已知向量且与的夹角为钝角,则的取值范围是

(A)[2,6]

(B)

(C)

(D)(2,6)参考答案:D略6.函数f(x)的图象向右平移一个单位长度,所得图象与y=ex关于y轴对称,则f(x)=(

)A.

B.

C.

D.参考答案:D略7.如图,已知=,=,=3,用,表示,则等于()A.+B.+C.+D.+参考答案:B8.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A. B. C. D.参考答案:D【考点】等可能事件的概率.【分析】由题意知本题是一个古典概型,试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果,∴由古典概型公式得到P==,故选D.【点评】本题考查离散型随机变量的概率问题,先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.9.已知集合,,则(

)A.

B.

C.

D.参考答案:B10.在等差数列中,,其前n项和为的值等于A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.若双曲线E的标准方程是,则双曲线E的渐进线的方程是. 参考答案:y=x【考点】双曲线的简单性质. 【专题】计算题;圆锥曲线的定义、性质与方程. 【分析】求出双曲线的a,b,再由渐近线方程y=x,即可得到所求方程. 【解答】解:双曲线E的标准方程是, 则a=2,b=1, 即有渐近线方程为y=x, 即为y=x. 故答案为:y=x. 【点评】本题考查双曲线的方程和性质:渐近线方程,考查运算能力,属于基础题. 12.设等差数列满足公差,,且数列中任意两项之和也是该数列的一项.若,则的所有可能取值之和为_________________.参考答案:364略13.已知函数y=f(x)存在反函数,若函数的图像经过点(3,1),则的值是___________.参考答案:214.已知函数的图象与直线y=2的两个相邻交点的距离等于π,则的单增区间为

。参考答案:略15.抛物线=-2y2的准线方程是

.

参考答案:16.(5分)如果y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(﹣x)成立,则称此函数具有“P(a)性质”.给出下列命题:①函数y=sinx具有“P(a)性质”;②若奇函数y=f(x)具有“P(2)性质”,且f(1)=1,则f(2015)=1;③若函数y=f(x)具有“P(4)性质”,图象关于点(1,0)成中心对称,且在(﹣1,0)上单调递减,则y=f(x)在(﹣2,﹣1)上单调递减,在(1,2)上单调递增;④若不恒为零的函数y=f(x)同时具有“P(0)性质”和“P(3)性质”,且函数y=g(x)对?x1,x2∈R,都有|f(x1)﹣f(x2)|≥|g(x1)﹣g(x2)|成立,则函数y=g(x)是周期函数.其中正确的是(写出所有正确命题的编号).参考答案:①③④【考点】:函数的周期性;抽象函数及其应用.【专题】:函数的性质及应用.【分析】:①运用诱导公式证明sin(x+π)=﹣sin(x)=sin(﹣x);②根据奇函数,周期性定义得出f(x+2)=f(﹣x)=﹣f(x),f(x+4)=f(x);③根据解析式得出f(x+4)=f(﹣x),f(x)关于x=2对称,即f(2﹣x)=f(2+x),f(x)为偶函数,根题意得出图象也关于点(﹣1,0)成中心对称,且在(﹣2,﹣1)上单调递减,利用偶函数的对称得出:在(1,2)上单调递增;④利用定义式对称f(x)=f(﹣x),f(x+3)=f(﹣x)=f(x),推论得出f(x)为偶函数,且周期为3;解:①∵sin(x+π)=﹣sin(x)=sin(﹣x),∴函数y=sinx具有“P(a)性质”;∴①正确②∵若奇函数y=f(x)具有“P(2)性质”,∴f(x+2)=f(﹣x)=﹣f(x),∴f(x+4)=f(x),周期为4,∵f(1)=1,f(2015)=f(3)=﹣f(1)=﹣1,∴②不正确,③∵若函数y=f(x)具有“P(4)性质”,∴f(x+4)=f(﹣x),∴f(x)关于x=2对称,即f(2﹣x)=f(2+x),∵图象关于点(1,0)成中心对称,∴f(2﹣x)=﹣f(x),即f(2+x)=﹣f(﹣x),∴得出:f(x)=f(﹣x),f(x)为偶函数,∵图象关于点(1,0)成中心对称,且在(﹣1,0)上单调递减,∴图象也关于点(﹣1,0)成中心对称,且在(﹣2,﹣1)上单调递减,根据偶函数的对称得出:在(1,2)上单调递增;故③正确.④∵“P(0)性质”和“P(3)性质”,∴f(x)=f(﹣x),f(x+3)=f(﹣x)=f(x),∴f(x)为偶函数,且周期为3,故④正确.故答案为:①③④.【点评】:本题考查了新概念的题目,函数的对称周期性,主要运用抽象函数性质判断,难度较大,特别是第3个选项,仔细推证.17.直线过圆的圆心,则圆心坐标为

。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.参考答案:【考点】参数方程化成普通方程;直线与圆的位置关系.【分析】(Ⅰ)利用极坐标方程的定义即可求得;(Ⅱ)数形结合:作出图象,根据图象即可求出有两交点时a的范围.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ(sinθ+cosθ)=a,∴曲线C1的直角坐标方程为x+y﹣a=0.(Ⅱ)曲线C2的直角坐标方程为(x+1)2+(y+1)2=1(﹣1≤y≤0),为半圆弧,如图所示,曲线C1为一族平行于直线x+y=0的直线,当直线C1过点P时,利用得a=﹣2±,舍去a=﹣2﹣,则a=﹣2+,当直线C1过点A、B两点时,a=﹣1,∴由图可知,当﹣1≤a<﹣2+时,曲线C1与曲线C2有两个公共点.19.某单位委托一家网络调查公司对单位1000名员工进行了QQ运动数据调查,绘制了日均行走步数(千步)的频率分布直方图,如图所示(每个分组包括左端点,不包括右端点,如第一组表示运动量在[4,6)之间(单位:千步))(Ⅰ)求单位职员日均行走步数在[6,8)的人数(Ⅱ)根据频率分布直方图算出样本数据的中位数(Ⅲ)记日均行走步数在[4,8)的为欠缺运动群体,[8,12)的为适度运动群体,[12,16)的为过量运动群体,从欠缺运动群体和过量运动群体中用分层抽样方法抽取5名员工,并在这5名员工中随机抽取2名与健康监测医生面谈,求过量运动群体中至少有1名员工与健康监测医生面谈的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)依频率分布直方图求出单位职工日均行走步数在(6,8)的频率,由此能求出单位职员日均行走步数在[6,8)的人数.(Ⅱ)根据频率分布直方图能求出中位数.(Ⅲ)由题意知欠缺运动人数为(0.050+0.100)×2×1000=300人,过量运动群体的人数为(0.075+0.025)×2×1000=200人,用分层抽样的方法抽取5人,则欠缺运动群体抽取3人,过量运动群体抽取2人,由此能求出过量运动群体中至少有1名员工与健康监测医生面谈的概率.【解答】解:(Ⅰ)依题意及频率分布直方图知,单位职工日均行走步数在(6,8)的频率为0.100×2=0.2,∴单位职员日均行走步数在[6,8)的人数为:0.2×1000=200人.(Ⅱ)根据频率分布直方图得中位数在[8,10)内,设中位数为x,则0.05×2+0.1×2+0.125×(x﹣8)=0.5,解得x=9.6.(Ⅲ)由题意知欠缺运动人数为(0.050+0.100)×2×1000=300人,过量运动群体的人数为(0.075+0.025)×2×1000=200人,用分层抽样的方法抽取5人,则欠缺运动群体抽取3人,过量运动群体抽取2人,在这5名员工中随机抽取2名与健康监测医生面谈,基本事件总数n=,过量运动群体中至少有1名员工与健康监测医生面谈的对立事件是从欠缺运动群体抽取2名与健康监测医生面谈,∴过量运动群体中至少有1名员工与健康监测医生面谈的概率p=1﹣=.20.极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为,曲线C2的极坐标方程为ρsinθ=a(a>0),射线,与曲线C1分别交异于极点O的四点A,B,C,D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和C2化成直角坐标方程;(Ⅱ)求|OA|?|OC|+|OB|?|OD|的值.参考答案:【考点】点的极坐标和直角坐标的互化.【分析】(Ⅰ)把C1、把C2的方程化为直角坐标方程,根据因为曲线C1关于曲线C2对称,可得直线y=a经过圆心(1,1),求得a=1,故C2的直角坐标方程.(Ⅱ)由题意可得,;φ;;=2cos(+φ),再根据|OA|?|OC|+|OB|?|OD|=8sin(φ+)sinφ+8cos(+φ)cosφ=8cos,计算求得结果.【解答】解:(Ⅰ)C1:即ρ2=2ρ(sinθ+cosθ)=2ρsinθ+2ρcosθ,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,因为曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,;φ;;=2cos(+φ),∴|OA|?|OC|+|OB|?|OD|=8sin(φ+)sinφ+8cos(+φ)cosφ=8cos[(+φ)﹣φ]=8×=4.21.在一次数学测验后,班级学委王明对选答题的选题情况进行了统计,如下表:(单位:人)

几何证明选讲坐标系与参数方程不等式选讲合计男同学124622女同学081220合计12121842(Ⅰ)在统计结果中,如果把《几何证明选讲》和《坐标系与参数方程》称为几何类,把《不等式选讲》称为代数类,我们可以得到如下2×2列联表:(单位:人)

几何类代数类总计男同学16622女同学81220总计241842据此判断能否在犯错误的概率不超过0.05的前提下认为选做“几何类”或“代数类”与性别有关?(Ⅱ)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知学委王明和两名数学科代表三人都在选做《不等式选讲》的同学中.①求在这名班级学委被选中的条件下,两名数学科代表也被选中的概率;②记抽到数学科代表的人数为X,求X的分布列及数学期望E(X).下面临界值表仅供参考:0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828参考公式:. 参考答案:(Ⅰ)由表中数据得K2的观测值.…2分所以,据此统计可在犯错误的概率不超过0.05的前提下认为选做“几何类”或“代数类”与性别有关.

……4分(Ⅱ)由题可知在“不等式选讲”的18位同学中,要选取3位同学.①方法一:令事件A为“这名班级学委被抽到”;事件B为“两名数学科代表被抽到”,则P(A∩B),P(A).所以

……7分方法二:令事件C为“在这名学委被抽到的条件下,两名数学科代表也被抽到”,从而X的分布列为

……10分于是

……12分22.(本小题共13分)

如图,在三棱锥中,底面,点,分别在棱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论