2021-2022学年湖南省株洲市王十万第二中学高三数学文联考试卷含解析_第1页
2021-2022学年湖南省株洲市王十万第二中学高三数学文联考试卷含解析_第2页
2021-2022学年湖南省株洲市王十万第二中学高三数学文联考试卷含解析_第3页
2021-2022学年湖南省株洲市王十万第二中学高三数学文联考试卷含解析_第4页
2021-2022学年湖南省株洲市王十万第二中学高三数学文联考试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年湖南省株洲市王十万第二中学高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,若有且仅有两个整数,使得,则a的取值范围为(

)A.

B.

C.

D.参考答案:B2.已知全集U={1,3,5,7,9},集合A={3,5,7},B={0},则(?uA)∪B等于()A.{0,1,3,5,7,9} B.{1,9} C.{0,1,9} D.?参考答案:C考点: 交、并、补集的混合运算.专题: 集合.分析: 由题意全集U={1,3,5,7,9},集合A={3,5,7},求出A的补集,然后求出(?UA)∪B.解答: 解:因为全集U={1,3,5,7,9},集合A={3,5,7},B={0},则?UA={1,9},(?UA)∪B={{0,1,9}.故选:C.点评: 本题考查集合的基本运算,考查计算能力,属于基础题.3.已知两个非零向量,互相垂直,若向量与共线,则实数的值为(

)A.5 B.3 C.2.5 D.2参考答案:C∵向量与共线,∴存在实数,使得,即,又向量,互相垂直,故,不共线.∴,解得.选C.

4.各项为正数的等比数列中,,则的值为(

)A.3

B.4

C.5

D.6参考答案:B5.执行如图所示的程序框图所表示的程序,则所得的结果为A.

B.

C.

D.参考答案:B略6.椭圆与双曲线有相同的焦点,则实数的值是

)A.

B.1或

C.1或

D.1参考答案:D略7.设.若z为实数,则实数m的值为(

)A.-2 B.-1 C.0 D.2参考答案:D【分析】运用复数的除法运算公式,求出,根据复数的分类规则,求出实数的值.【详解】为实数,所以,故选D.【点睛】本题考查了复数的除法运算、复数的分类,正确求出是解题的关键.8.设集合M=,则下列关系式正确的是(

)(A)0M

(B)M

(C)M

(D)M参考答案:C略9.在矩形ABCD中,在上截取,沿AE将翻折得到,使点在平面上的射影落在上,则二面角的平面角的余弦值为(

)A. B. C. D.参考答案:C10.若,则的值为A.

B.

C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.

.

参考答案:12.已知函数,设集合,从集合P和Q中随机地各取一个分数分别作为a和b,则函数在区间()上为增函数的概率为

。参考答案:略13.已知的定义域是,则的定义域为

.参考答案:[1,3]略14.记不等式的解集为,若集合中有且只有三个元素,则实数的取值范围为

.参考答案:答案:15.不等式x2﹣|x﹣1|﹣1≤0的解集为

.参考答案:{x|﹣2≤x≤1}【考点】绝对值不等式的解法.【分析】分x﹣1≥0和x﹣1<0两种情况去掉绝对值,转化为一元二次不等式求解,把解集取并集.【解答】解:当x﹣1≥0时,原不等式化为x2﹣x≤0,解得0≤x≤1.∴x=1.当x﹣1<0时,原不等式化为x2+x﹣2≤0,解得﹣2≤x≤1.∴﹣2≤x<1.综上,1≥x≥﹣2.故答案为{x|1≥x≥﹣2}.16.设函数,,其中,为常数,已知曲线与在点(2,0)处有相同的切线l。(1)求的值,并写出切线l的方程;(2)若方程有三个互不相同的实根0、、,其中,且对任意的,恒成立,求实数m的取值范围。参考答案:解:(Ⅰ) 由于曲线在点(2,0)处有相同的切线, 故有由此得 所以,切线的方程为

(Ⅱ)由(Ⅰ)得,所以 依题意,方程有三个互不相同的实数, 故是方程的两相异的实根。 所以 又对任意的成立, 特别地,取时,成立,得 由韦达定理,可得 对任意的 则 所以函数的最大值为0。 于是当时,对任意的恒成立, 综上,的取值范围是

略17.设函数对任意不等式恒成立,则正数的取值范围是

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆:,点是直线:上的一动点,过点作圆M的切线、,切点为、.(Ⅰ)当切线PA的长度为时,求点的坐标;(Ⅱ)若的外接圆为圆,试问:当运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(Ⅲ)求线段长度的最小值.参考答案:解:(Ⅰ)由题可知,圆M的半径r=2,设P(2b,b),因为PA是圆M的一条切线,所以∠MAP=90°,所以MP=,解得所以(Ⅱ)设P(2b,b),因为∠MAP=90°,所以经过A、P、M三点的圆以MP为直径,其方程为:

即由,解得或,所以圆过定点(Ⅲ)因为圆方程为

……①圆:,即……②②-①得圆方程与圆相交弦AB所在直线方程为:

点M到直线AB的距离

相交弦长即:

当时,AB有最小值略19.已知数列中,,对于任意的,有,(1)求数列的通项公式;(2)数列满足:,,求数列的通项公式;(3)设,是否存在实数,当时,恒成立,若存在,求实数的取值范围,若不存在,请说明理由。参考答案:解:(1)取,则∴()∴是公差为,首项为的等差数列∴

…………4分(2)∵

①∴

②①-②得:∴

…………6分当时,∴,满足上式∴

…………8分(3)假设存在,使..

.当为正偶函数时,恒成立,Ks5u

∴.∴

…………11分当为正奇数时,恒成立.∴∴.∴.综上可知,存在实数.使时,恒成立.

…………14分20.已知等差数列,,

(1)求数列的通项公式

(2)设,求数列的前项和参考答案:解:(1)由已知可得

又因为,所以

所以(2)由(1)可知,设数列的前项和为

②①-②可得-3

=

21.(本小题满分12分)对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率100.2524

20.05合计1

(Ⅰ)求出表中及图中的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.参考答案:解:(Ⅰ)由分组内的频数是10,频率是0.25知,,所以.……2分因为频数之和为,所以,,

因为是对应分组的频率与组距的商,所以…………5分(Ⅱ)因为该校高三学生有240人,分组内的频率是0.25,所以估计该校高三学生参加社区服务的次数在此区间内的人数为人………7分(Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有人,设在区间内的人为,在区间内的人为.则任选2人共有,15种情况,……………9分而两人都在内只能是一种,……………………11分所以所求概率为

…………………12分22.(14分)已知数列{an}是等差数列,{bn}是等比数列,且a1=11,b1=1,a2+b2=11,a3+b3=11.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)求数列{|an﹣bn|}的前12项的和S12.参考答案:(Ⅰ)设的公差为,的公比为,则由可得

-----------------------3分可求得:,,

----------------------------------------5分从而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论