版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列四个数中,是无理数的有()A. B. C. D.2.化简,其结果是()A. B. C. D.3.对于一次函数y=kx+b(k,b为常数,k0)下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是()A.5 B.8 C.12 D.144.下列运算不正确的是()A. B. C. D.5.如图,在△ABC中,AB=8,BC=6,AC=7,如果将△BCD沿BD翻折使C点与AB边上E点重合,那么△AED的周长是()A.8 B.9 C.10 D.116.小颖和小亮在做一道关于整数减法的作业题,小亮将被减数后面多加了一个0,得到的差为750;小颖将减数后面多加了一个0,得到的差为-420,则这道减法题的正确结果为()A.-30 B.-20 C.20 D.307.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30° B.50° C.80° D.100°8.下列四个汽车标志图中,不是轴对称图形的是()A. B.C. D.9.如图,点是中、的角平分线的交点,,则的度数是()A. B. C. D.10.若分式的值为0,则x的值为()A.0 B.-1 C.1 D.2二、填空题(每小题3分,共24分)11.如图,∠MON=30°,点A1、A2、A3、……在射线ON上,点B1、B2、B3、……在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4,……均为等边三角形,若OA1=1,则△A2019B2019A2020的边长为__________12.某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”,小亮说:“甲超市销售额今年比去年增加10%小颖说:“乙超市销售额今年比去年增加20%根据他们的对话,得出今年甲超市销售额为_____万元13.如图,长方形纸片ABCD中,AB=6,BC=8,折叠纸片使AB边与对角线AC重合,点B与点F重合,折痕为AE,则EF的长是_________.14.如图,已知AC=BD,要使ABCDCB,则只需添加一个适合的条件是_________(填一个即可).15.如图,已知的两条直角边长分别为6、8,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积为______.16.命题“如果,则,”的逆命题为____________.17.若,那么的化简结果是.18.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.三、解答题(共66分)19.(10分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?20.(6分)如图,已知∠AOB=90°,OM是∠AOB的平分线,三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D,求证:PC=PD.21.(6分)(2017广东省)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.22.(8分)如图,在网格中,每个小正方形的边长都为.(1)建立如图所示的平面直角坐标系,若点,则点的坐标_______________;(2)将向左平移个单位,向上平移个单位,则点的坐标变为_____________;(3)若将的三个顶点的横纵坐标都乘以,请画出;(4)图中格点的面积是_________________;(5)在轴上找一点,使得最小,请画出点的位置,并直接写出的最小值是______________.23.(8分)如图,已知直线与轴,轴分别交于,两点,以为直角顶点在第二象限作等腰.(1)求点的坐标,并求出直线的关系式;(2)如图,直线交轴于,在直线上取一点,连接,若,求证:.(3)如图,在(1)的条件下,直线交轴于点,是线段上一点,在轴上是否存在一点,使面积等于面积的一半?若存在,请求出点的坐标;若不存在,请说明理由.24.(8分)如图已知的三个顶点坐标分别是,,.(1)将向上平移4个单位长度得到,请画出;(2)请画出与关于轴对称的;(3)请写出的坐标,并用恰当的方式表示线段上任意一点的坐标.25.(10分)某中学举行“中国梦·校园好声音”歌手大赛,高、初中根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如下图所示:根据图示信息,整理分析数据如下表:平均数(分)中位数(分)众数(分)初中部85高中部85100(说明:图中虚线部分的间隔距离均相等)(1)求出表格中的值;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.26.(10分)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20151212B库2520108(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据无理数的意义判断即可.【详解】A.是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.,是整数,属于有理数,故本选项不合题意.故选:B.【点睛】本题考查了对无理数的意义的理解,无理数包括三方面的数:①含π的;②开方开不尽的根式;③一些有规律的数.2、B【解析】=.所以选B.3、C【分析】从表中可以看出,自变量和函数值的关系,即可判定.【详解】解:从表中可以看出,自变量每增加1个单位,函数值的前3个都是增加3,只有第4个是增加了4,导致第5个只增加了2。第4个应是增加了3,即为11。这样函数值随自变量是均匀增加了,因而满足一次函数关系.∴这个计算有误的函数值是12,
故选:C【点睛】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是关键.4、D【分析】结合选项分别进行同底数幂的乘法、幂的乘方和积的乘方的运算,然后选择正确选项.【详解】解:A.,计算正确,故本选项错误;
B.,计算正确,故本选项错误;
C.,原式计算正确,故本选项错误;
D.,计算错误,故本选项正确.
故选:D.【点睛】本题考查了同底数幂的乘法、幂的乘方和积的乘方等知识,掌握运算法则是解答本题的关键.5、B【分析】由翻折的性质可知:DC=DE,BC=BE,于是可得到AD+DE=7,AE=2,故此可求得△ADE的周长为1.【详解】∵由翻折性质可知:DC=DE,BC=BE=6,∴AD+DE=AD+DC=AC=7,AE=AB-BE=AB-CB=8-6=2,∴△ADE的周长=7+2=1,故选:B.【点睛】本题主要考查翻折的性质,找准对应边,分析长度是解题关键.6、D【分析】根据题意,设被减数为x,减数为y,则,然后根据二元一次方程组的解法,求出x、y的值,判断出这道减法题的算式是多少即可.【详解】解:设被减数为x,减数为y,则,解得,∴这道减法题的正确结果应该为:80-50=1.故选D.【点睛】此题主要考查了有理数的减法运算,以及二元一次方程组的求解方法,要熟练掌握.7、B【解析】试题分析:利用△ABC≌△DEF,得到对应角相等∠D=∠A=80°,然后在△DEF中依据三角形内角和定理,求出∠F=180﹣∠D﹣∠E=50°故选B.考点:全等三角形的性质.8、B【解析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.对各图形分析后即可得解A、是轴对称图形,故不符合题意;B、不是轴对称图形,故符合题意;C、是轴对称图形,故不符合题意;D、是轴对称图形,故不符合题意9、D【分析】根据点P是△ABC中∠ABC、∠ACB的角平分线的交点,得出∠ABP+∠ACP=∠PBC+∠PCB,利用三角形的内角和等于180°,可求出∠ABC+∠ACB的和,从而可以得到∠PBC+∠PCB,则∠BPC即可求解.【详解】解:∵点P是△ABC中∠ABC、∠ACB的角平分线的交点∴∠ABP=∠PBC,∠ACP=∠PCB∴∠ABP+∠ACP=∠PBC+∠PCB∵∠A=118°∴∠ABC+∠ACB=62°∴∠PBC+∠PCB=62°÷2=31°∴∠BPC=180°-31°=149°故选:D.【点睛】本题主要考查的是三角形角平分线的性质以及三角形的内角和性质,正确的掌握以上两个性质是解题的关键.10、B【详解】解:依题意得,x+1=2,解得x=-1.当x=-1时,分母x+2≠2,即x=-1符合题意.故选B.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.二、填空题(每小题3分,共24分)11、2【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…则△An-1BnAn+1的边长为2n-1,即可得出答案.【详解】∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此类推:△An-1BnAn+1的边长为2n-1.则△A2019B2019A2020的边长为2.
故答案是2.【点睛】本题考查等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.12、1【分析】设甲超市去年销售额为x万元,乙超市去年销售额为y万元,根据题意列出方程组求解后,再求出甲超市今年的销售额即可.【详解】解:设甲超市去年销售额为x万元,乙超市去年销售额为y万元,根据题意得解得所以今年甲超市销售额为(万元).故答案为:1.【点睛】本题主要考查二元一次方程组的应用,根据题意列出方程组是解题的关键.13、1【分析】求出AC的长度;证明EF=EB(设为x),利用等面积法求出x即可解决问题.【详解】解:∵四边形ABCD为矩形,
∴∠B=90°,
由勾股定理得:AC2=AB2+BC2,
∴AC=10;
由题意得:
∠AFE=∠B=90°,
AF=AB=6,EF=EB(设为x),∴,即,解得.故答案为:1.【点睛】本题考查折叠的性质,矩形的性质.掌握等面积法是解题关键.14、AB=DC【分析】已知AC=BD,BC为公共边,故添加AB=DC后可根据“SSS”证明ABCDCB.【详解】解:∵BC为公共边,∴BC=CB,又∵AC=BD,∴要使ABCDCB,只需添加AB=DC即可故答案为:AB=DC【点睛】本题考察了全等三角形的判断,也可以添加“∠ABC=∠DCB”,根据“SAS”可证明ABCDCB.15、1【分析】先分别求出以6、8为直径的三个半圆的面积,再求出三角形ABC的面积,阴影部分的面积是三角形ABC的面积加以AC为直径和以BC为直径的两个半圆的面积再减去以AB为直径的半圆的面积.【详解】解:由勾股定理不难得到AB=10以AC为直径的半圆的面积:π×(6÷2)2×=π=4.5π,以BC为直径的半圆的面积:π×(8÷2)2×=8π,以AB为直径的半圆的面积:π×(10÷2)2×=12.5π,三角形ABC的面积:6×8×=1,阴影部分的面积:1+4.5π+8π−12.5π=1;故答案是:1.【点睛】本题考查了勾股定理的运用,解答此题的关键是,根据图形中半圆的面积、三角形的面积与阴影部分的面积的关系,找出对应部分的面积,列式解答即可.16、若,则【分析】根据逆命题的定义即可求解.【详解】命题“如果,则,”的逆命题为若,,则故填:若,,则.【点睛】此题主要考查逆命题,解题的关键是熟知逆命题的定义.17、【分析】直接利用二次根式的性质化简求出答案.【详解】∵x<2,∴=2﹣x.故答案为:2﹣x.【点睛】本题考查了二次根式的性质与化简,正确把握二次根式的性质是解答本题的关键.18、1.【分析】设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.【详解】解:设小矩形的长为x,宽为y,则可列出方程组,,解得,则小矩形的面积为6×10=1.【点睛】本题考查了二元一次方程组的应用.三、解答题(共66分)19、(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【分析】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意,得:.解得:,经检验,是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.20、证明见解析.【解析】试题分析:过点P作PE⊥OA于点E,PF⊥OB于点F.根据垂直的定义得到由OM是∠AOB的平分线,根据角平分线的性质得到利用四边形内角和定理可得到而则,然后根据“AAS”可判断△PCE≌△PDF,根据全等的性质即可得到试题解析:证明:过点P作PE⊥OA于点E,PF⊥OB于点F.∵OM是∠AOB的平分线,而在△PCE和△PDF中,∵∴△PCE≌△PDF(AAS),点睛:角平分线上的点到角两边的距离相等.21、(1)作图见见解析;(2)100°.【解析】试题分析:(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.试题解析:(1)如图所示:(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.22、(1);(2);(3)见解析;(4)5;(5)【分析】(1)根据第一象限点的坐标特征写出C点坐标;
(2)利用点平移的坐标变换规律求解;
(3)将△AOC的三个顶点的横纵坐标都乘以-得到A1、C1的坐标,然后描点即可;
(4)用一个矩形的面积分别减去三个三角形的面积去计算△AOC的面积;
(5)作C点关于x轴的对称点C′,然后计算AC′即可.【详解】解:(1)如图,点的坐标;(2)将向左平移个单位,向上平移个单位,则点的坐标变为;(3)如图,为所作;(4)图中格点的面积;(5)如图,作C关于x轴的对待点C’,连接C’A交x轴于点P,点即为所求作的点,的最小值.故答案为(1);(2);(4);(5).【点睛】本题考查了作图-平移变换及轴对称变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了最短路径问题.23、(1)y=x+4;(2)见解析;(3)存在,点N(﹣,0)或(,0).【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、(0,)、(1,-1),即可求解;(3)求出BC表达式,将点P代入,求出a值,再根据AC表达式求出M点坐标,由S△BMC=MB×yC=×10×2=10,S△BPN=S△BCM=5=NB×a=可求解.【详解】解:(1)令x=0,则y=4,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,4)、(﹣2,0),过点C作CH⊥x轴于点H,∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,∴∠ABO=∠BCH,∠CHB=∠BOA=90°,BC=BA,在△CHB和△BOA中,,∴△CHB≌△BOA(AAS),∴BH=OA=4,CH=OB=2,∴点C(﹣6,2),将点A、C的坐标代入一次函数表达式:y=mx+b得:,解得:,故直线AC的表达式为:y=x+4;(2)同理可得直线CD的表达式为:y=﹣x﹣1①,则点E(0,﹣1),直线AD的表达式为:y=﹣3x+4②,联立①②并解得:x=2,即点D(2,﹣2),点B、E、D的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),故点E是BD的中点,即BE=DE;(3)将点BC的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x-1,将点P(﹣,a)代入直线BC的表达式得:,直线AC的表达式为:y=x+4,令y=0,则x=-12,则点M(﹣12,0),S△BMC=MB×yC=×10×2=10,S△BPN=S△BCM=5=NB×a=,解得:NB=,故点N(﹣,0)或(,0).【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键.24、(1)图见解析;(2)图见解析;(3)的坐标为;线段上任意一点的坐标为,其中.【分析】(1)先利用平移的性质求出的坐标,再顺次连接即可得;(2)先利用轴对称的性质求出的坐标,再顺次连接即可得;(3)由(1)中即可知的坐标,再根据线段所在直线的函数表达式即可得.【详解】(1)向上平移4个单位长度的对应点坐标分别为,即,顺次连接可得到,画图结果如图所示;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度WPS文档租赁合同费用结算及支付方式调整3篇
- 职业健身教练课程设计
- 二零二五年度农业产业化公司入股合同书3篇
- 2024年物业协议终止补充协议书版B版
- 液压转向器的课程设计
- 矿山电工课程设计
- 幼儿单脚站立课程设计
- 2024年规范化劳务外包协议样本版B版
- 2024涉外货物买卖合同涉及的税收和保险问题
- 二零二五年度党建与企业职工心理健康合作协议3篇
- 关于水浒传的题目单选题100道及答案解析
- DB3502T 078-2022 代建工作规程
- 【产业图谱】2024年山西省重点产业规划布局全景图谱(附各地区重点产业、产业体系布局、未来产业发展规划等)
- 消化性溃疡完整版本
- 人教版九年级化学电子版教材(全册)-课件资料
- 生物人教版(2024)版七年级上册1.2.1学习使用显微镜教学课件03
- 有害生物防制员技能竞赛理论考试题库500题(含答案)
- HIV阳性孕产妇全程管理专家共识2024年版解读
- 小学体育跨学科主题学习教学设计:小小志愿军
- 附件2:慢病管理中心评审实施细则2024年修订版
- 《ISO56001-2024创新管理体系 - 要求》之4:“4组织环境-确定创新管理体系的范围”解读和应用指导材料(雷泽佳编制-2024)
评论
0/150
提交评论