版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○……○…………内…………○…………装…………○…………订…………○…………线…………○……○…………内…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………外…………○…………装…………○…………订…………○…………线…………○……○…………内…………○…………装…………○…………订…………○…………线…………○……○…………内…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………外…………○…………装…………○…………订…………○…………线…………○…………试卷第=page88页,共=sectionpages88页试卷第=page77页,共=sectionpages88页2022年山东省聊城市莘县中考二模数学试题评卷人得分一、单选题1.下列算式中,运算结果为负数的是(
)A. B. C. D.2.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为(
)A. B.C. D.3.小明同学对数据26,36,36,46,5■,52进行统计分析.发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是(
)A.平均数 B.方差 C.中位数 D.众数4.某种计算机完成一次基本运算的时间约为1纳秒,已知1纳秒秒,该计算机完成15次基本运算,所用时间用科学记数法表示为(
)A.秒 B.秒 C.秒 D.秒5.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B. C. D.6.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A. B. C. D.7.如图,在长方形纸片中,,.把长方形纸片沿直线折叠,点落在点处,交于点,则的长为(
)A. B. C. D.8.若分式方程有增根,则实数a的取值是()A.0或2 B.4 C.8 D.4或89.如图,五边形是的内接正五边形,是的直径,则的度数是()A.18° B.36° C. D.72°10.若关于的一元一次不等式组恰有3个整数解,且一次函数不经过第三象限,则所有满足条件的整数的值之和是()A. B. C.0 D.111.如图,已知A(3,1)与B(1,0),PQ是直线上的一条动线段且(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为(
)A.(,) B.(,) C.(0,0) D.(1,1)12.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0;②a+b+c=0;③ac+b+1=0;④2+c是关于x的一元二次方程ax2+bx+c=0的一个根,其中正确的有()A.1个 B.2个 C.3个 D.4个评卷人得分二、填空题13.已知,则______.14.如图,这是某同学用纸板做成的一个底面直径为10cm,高为12cm的无底圆锥形玩具(接缝忽略不计),则做这个玩具所需纸板的面积是_____________cm2(结果保留).15.如图,为半圆的直径,且,将半圆绕点顺时针旋转,点旋转到点的位置,则图中阴影部分的面积为_____.16.如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是_____.17.如图,菱形中,,,延长至,使,以为一边,在的延长线上作菱形,连接,得到;再延长至,使,以为一边,在的延长线上作菱形,连接,得到……按此规律,得到,记的面积为,的面积为……的面积为,则_____.评卷人得分三、解答题18.先化简,再求值:,其中19.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.20.如图,在平行四边形中,对角线与交于点O,点M,N分别为、的中点,延长至点E,使,连接.(1)求证:;(2)若,且,,求四边形的面积.21.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.22.某兴趣小组为了测量大楼的高度,先沿着斜坡走了米到达坡顶点处,然后在点处测得大楼顶点的仰角为,已知斜坡的坡度为,点到大楼的距离为米,求大楼的高度.(参考数据:,,)23.如图,在平面直角坐标系中,直线AB与y轴交于点,与反比例函数在第二象限内的图象相交于点.(1)求直线AB的解析式;(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点E,与y轴交于点D,求的面积;(3)设直线CD的解析式为,根据图象直接写出不等式的解集.24.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.25.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.答案第=page2222页,共=sectionpages2323页答案第=page2323页,共=sectionpages2323页参考答案:1.C【解析】【分析】根据相反数、绝对值、乘方的性质计算,即可得到答案.【详解】A.−(−2)=2,此选项不符合题意;B.,此选项不符合题意;C.,此选项符合题意;D.,此选项不符合题意;故选:C.【点睛】本题考查的知识点有相反数的运算、绝对值的运算及乘方运算的法则,熟记并理解这些运算法则并准确判定结果的符号是关键.2.D【解析】【分析】根据从左边看到的图形是左视图解答即可.【详解】由俯视图可知,该组合体的左视图有3列,其中中间有3层,两边有2层,故选D.【点睛】本题考查了简单组合体的三视图,从左边看到的图形是左视图.3.C【解析】【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【详解】解:这组数据的平均数、方差和标准差都与第5个数有关,而这组数据的中位数为36与46的平均数,与第5个数无关.故选:C.【点睛】本题考查了方差:它也描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念,解题的关键是熟练掌握平均数、中位数、方差和标准差的定义.4.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】计算机完成15次基本运算,所用时间用科学记数法表示为15=秒故选C【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B.由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D.由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小6.A【解析】【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【详解】解:如图,连接PA、PB、OP,则S半圆O=,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为,故选A.【点睛】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.7.A【解析】【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm,设AF=xcm,则DF=(8-x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【详解】∵四边形ABCD是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm,则DF=(8-x)cm在Rt△AFD中,AF2=DF2+AD2,AD=6cm,故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.8.D【解析】【分析】先把分式方程化为整式方程,确定分式方程的增根,代入计算即可.【详解】解:方程两边同乘x(x﹣2),得3x﹣a+x=2(x﹣2),由题意得,分式方程的增根为0或2,当x=0时,﹣a=﹣4,解得,a=4,当x=2时,6﹣a+2=0,解得,a=8,故选D.【点睛】本题考查的是分式方程的增根,增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.9.C【解析】【分析】根据正五边形的性质和圆周角定理即可得到结论.【详解】解:五边形是的内接正五边形,,,,又是的直径,,∴,,故选:C.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.10.C【解析】【分析】根据关于x的一元一次不等式组恰有3个整数解,可以求得a的取值范围,再根据一次函数不经过第三象限,可以得到a的取值范围,结合不等式组和一次函数可以得到最后a的取值范围,从而可以写出满足条件的a的整数值,然后相加即可.【详解】解:由不等式组,得,∵关于x的一元一次不等式组恰有3个整数解,∴,解得-3<a≤1,∵一次函数y=(a-2)x+a+1不经过第三象限,∴a-2<0且a+1≥0,∴-1≤a<2,又∵-3<a≤1,∴-1≤a≤1,∴整数a的值是-1,0,1,∴所有满足条件的整数a的值之和是:-1+0+1=0,故选:C.【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,求出a的取值范围,利用一次函数的性质和不等式的性质解答.11.A【解析】【分析】作点B关于直线y=x的对称点(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后,得(2,0),连接交直线y=x于点Q,求出直线解析式,与y=x组成方程组,即可求出Q点的坐标.【详解】解:作点B关于直线y=x的对称点(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后,得(2,0),连接交直线y=x于点Q,如下图所示.∵,,∴四边形是平行四边形,∴,∵且,∴当值最小时,值最小.根据两点之间线段最短,即三点共线时,值最小.∵(0,1),(2,0),∴直线的解析式,∴,即,∴Q点的坐标为(,).故选A.【点睛】本题主要考查了一次函数图像上点的坐标特征、最短路径问题.12.B【解析】【分析】根据抛物线开口,对称轴,与y轴交点判断a、b、c符号,即可判断①正确;根据对称轴,得到a、b关系,结合c即可判断②不正确;用c表示A坐标,代入化简即可判断③错误;根据A坐标和对称轴,求出B坐标,即可判断④正确.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵b=﹣2a,∴a+b=a﹣a=0,∵c>0,∴a+b+c>0,所以②不正确;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③错误;∵A(﹣c,0),对称轴为直线x=1,∴B(2+c,0),∴2+c是关于x的一元二次方程ax2+bx+c=0的一个根,所以④正确.故选:B.【点睛】本题考查了根据二次函数图象判断结论,难度较大,理解抛物线形状与a、b、c关系,灵活运用对称轴特点是解题关键.13.【解析】【分析】根据二次根式有意义的条件可得,解可得x的值,进而可得y的值,然后求可得答案.【详解】解:由题意得:,解得:x=4,则y=,则,故答案为:.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.65π【解析】【详解】解:作PO⊥AB于O.在Rt△PAO中,PA===13,∴S表面积=π×5×13=65π,∴做这个玩具所需纸板的面积是65πcm2.故答案为65π.15.6【解析】【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形的面积之和减去半圆的面积.【详解】由图可得,图中阴影部分的面积为:,故答案为.【点睛】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16.【解析】【分析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S△OCE=S△OBD=k,根据OA的中点C,利用△OCE∽△OAB得到面积比为1:4,代入可得结论.【详解】解:连接OD,过C作CE∥AB,交x轴于E,∵∠ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,∴S△COE=S△BOD=,S△ACD=S△OCD=2,∵CE∥AB,∴△OCE∽△OAB,∴,∴4S△OCE=S△OAB,∴4×k=2+2+k,∴k=,故答案为:.【点睛】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了相似三角形的判定与性质.17.【解析】【分析】由题意易得,则有为等边三角形,同理可得…….都为等边三角形,进而根据等边三角形的面积公式可得,,……由此规律可得,然后问题可求解.【详解】解:∵四边形是菱形,∴,,∵,∴,∴,∵,∴,∴为等边三角形,同理可得…….都为等边三角形,过点B作BE⊥CD于点E,如图所示:∴,∴,同理可得:,,……;∴由此规律可得:,∴;故答案为.【点睛】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.18.【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用特殊锐角的三角函数值、负整数指数幂与零指数幂得到a的值,继而将a的值代入计算可得.【详解】原式=[]•(a+1)=•(a+1)=,当a=2cos30°+()-1-(π-3)0=2×+2-1=+1时,原式=.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及特殊锐角的三角函数值、负整数指数幂与零指数幂.19.(1)500,108°;(2)见解析;(3)1500名;(4).【解析】【分析】(1)由条形统计图和扇形统计图得到良好的人数及其所对应的百分比,即可得到该校八年级总人数;通过计算优秀人员所占比例,即可得到其所对的圆心角;(2)计算出等级“一般”的学生人数,补充图形即可;(3)用该校八年级成绩及格的比例乘以该市的学生人数即可;(4)画出树状图,根据概率公式求概率即可.【详解】(1)由条形统计图知:等级“良好”的人数为:200名由扇形统计图知:等级“良好”的所占的比例为:40%则该校八年级总人数为:(名)由条形统计图知:等级“优秀”的人数为:150名其站该校八年级总人数的比例为:所以其所对的圆心角为:故答案为:500,108°(2)等级“一般”的人数为:(名)补充图形如图所示:(3)该校八年级中不合格人数所占的比例为:故该市15000名学生中不合格的人数为:(名)(4)从甲,乙,丙,丁四名学生中任取选出两人,所得基本事件有:共计12种,其中必有甲同学参加的有6种,必有甲同学参加的概率为:.【点睛】本题考查了统计与概率的综合,熟知以上知识是解题的关键.20.(1)见解析;(2)24【解析】【分析】(1)由四边形ABCD是平行四边形得出AB=CD,ABCD,进而得到∠BAC=∠DCA,再结合AO=CO,M,N分别是OA和OC中点即可求解;(2)证明△ABO是等腰三角形,结合M是AO的中点,得到∠BMO=∠EMO=90°,同时△DOC也是等腰三角形,N是OC中点,得到∠DNO=90°,得到EMDN,再由(1)得到EM=DN,得出四边形EMND为矩形,进而求出面积.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,ABCD,OA=OC,∴∠BAC=∠DCA,又点M,N分别为、的中点,∴,在和中,,∴.(2)BD=2BO,又已知BD=2AB,∴BO=AB,∴△ABO为等腰三角形;又M为AO的中点,∴由等腰三角形的“三线合一”性质可知:BM⊥AO,∴∠BMO=∠EMO=90°,同理可证△DOC也为等腰三角形,又N是OC的中点,∴由等腰三角形的“三线合一”性质可知:DN⊥CO,∠DNO=90°,∵∠EMO+∠DNO=90°+90°=180°,∴EMDN,又已知EM=BM,由(1)中知BM=DN,∴EM=DN,∴四边形EMND为平行四边形,又∠EMO=90°,∴四边形EMND为矩形,在Rt△ABM中,由勾股定理有:,∴AM=CN=3,∴MN=MO+ON=AM+CN=3+3=6,∴.故答案为:.【点睛】本题考查了平行四边形的性质、矩形的判定和性质、矩形的面积公式等,熟练掌握其性质和判定方法是解决此类题的关键.21.(1)W1=﹣x2+32x﹣236;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为88万元.【解析】【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:14≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵14≤x≤16,∴抛物线的对称轴x=15.5,又14≤x≤16.x=14时,W2有最小值,最小值=88(万元),答:该公司第二年的利润W2至少为88万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.22.大楼的高度为52米【解析】【分析】过点B作BE⊥AD于点E,作BF⊥CD于点F,在Rt△ABE中,根据坡度及勾股定理求出BE和AE的长,进而由三个角是直角的四边形是矩形判断四边形BEDF是矩形,得到BF和FD的长,再在Rt△BCF中,根据∠CBF的正切函数解直角三角形,得到CF的长,由CD=CF+FD得解.【详解】解:如下图,过点B作BE⊥AD于点E,作BF⊥CD于点F,在Rt△ABE中,AB=52,∵∴tan∠BAE==,∴AE=2.4BE,又∵BE2+AE2=AB2,∴BE2+(2.4BE)2=522,解得:BE=20,∴AE=2.4BE=48;∵∠BED=∠D=∠BFD=90°,∴四边形BEDF是矩形,∴FD=BE=20,BF=ED=AD-AE=72-48=24;在Rt△BCF中,tan∠CBF=,即:tan53°==∴CF=BF=32,∴CD=CF+FD=32+20=52.答:大楼的高度为52米.【点睛】本题考查解直角三角形的实际应用,熟练掌握仰角的定义,准确确定合适的直角三角形并且根据勾股定理或三角函数列出方程是解题的关键.23.(1));(2)的面积为18;(3)或.【解析】【分析】(1)将点A(-1,a)代入反比例函数求出a的值,确定出A的坐标,再根据待定系数法确定出一次函数的解析式;(2)根据直线的平移规律得出直线CD的解析式为y=-x-2,从而求得D的坐标,联立方程求得交点C、E的坐标,根据三角形面积公式求得△CDB的面积,然后由同底等高的两三角形面积相等可得△ACD与△CDB面积相等;(3)根据图象即可求得.【详解】(1))∵点在反比例函数的图象上,∴,∴,∵点,∴设直线AB的解析式为,∵直线AB过点,∴,解得,∴直线AB的解析式为;(2)∵将直线AB向下平移9个单位后得到直线CD的解析式为,∴,∴,联立,解得或,∴,,连接AC,则的面积,由平行线间的距离处处相等可得与面积相等,∴的面积为18.(3)∵,,∴不等式的解集是:或.【点睛】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.24.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 集装箱购买合同范例
- 专业会议接待服务合同
- 房屋买卖合同契税缴纳的注意事项
- 水果代销合作合同范本
- 房屋借款抵押合同
- 建材租赁合同
- 项目劳动合同与实习协议
- 有关垃圾分类的英文宣传
- 涉电公共安全宣传
- 北师大版七年级下册数学第一次月考试卷
- Unit 2 How often do you exercise Section A 1a-2d 教学实录 2024-2025学年人教版八年级英语上册
- 广告牌匾安装施工方案
- 石文化与宝玉石鉴赏智慧树知到期末考试答案2024年
- 《设计调查问卷》教学设计范文
- 常用抗凝药物的应用及护理PPT课件
- 枇杷栽培技术26661
- 离退休干部管理岗试题
- 青岛海事局平台建设方案
- 施工现场临水临电.PPT
- 高速公路BOT项目公司合同管理办法
- 依法治校工作机构及职责
评论
0/150
提交评论