呼和浩特市重点中学2022-2023学年数学八年级第一学期期末质量检测试题含解析_第1页
呼和浩特市重点中学2022-2023学年数学八年级第一学期期末质量检测试题含解析_第2页
呼和浩特市重点中学2022-2023学年数学八年级第一学期期末质量检测试题含解析_第3页
呼和浩特市重点中学2022-2023学年数学八年级第一学期期末质量检测试题含解析_第4页
呼和浩特市重点中学2022-2023学年数学八年级第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若是完全平方式,则常数k的值为()A.6 B.12 C. D.2.的平方根是()A.±16 B. C.±2 D.3.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB,则∠BOC与∠A的大小关系是()A.∠BOC=2∠A B.∠BOC=90°+∠AC.∠BOC=90°+∠A D.∠BOC=90°-∠A4.在下列长度的各组线段中,能组成直角三角形的是()A.1,2,3 B.5,6,7 C.1,4,9 D.5,12,135.如图,在中,,,则的度数为()A. B. C. D.6.已知某多边形的内角和比该多边形外角和的2倍多,则该多边形的边数是()A.6 B.7 C.8 D.97.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. B. C. D.8.一次函数的与的部分对应值如下表所示,根据表中数值分析.下列结论正确的是()A.随的增大而增大B.是方程的解C.一次函数的图象经过第一、二、四象限D.一次函数的图象与轴交于点9.如图,∠A=20°,∠B=30°,∠C=50°,求∠ADB的度数()A.50° B.100° C.70° D.80°10.已知A(﹣2,a),B(1,b)是一次函数y=﹣2x+1图象上的两个点,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定二、填空题(每小题3分,共24分)11.如图,在中,和的平分线相交于点,过作,交于点,交于点.若,则线段的长为______.12.一个数的立方根是,则这个数的算术平方根是_________.13.如图,已知为中的平分线,为的外角的平分线,与交于点,若,则______.14.若a=-0.22,b=-2-2,c=(-)-2,d=(-)0,将a,b,c,d按从大到小的顺序用“>”连接起来:__________.15.若不等式组的解集是,则的取值范围是________.16.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是_______.17.如图,在若中,是边上的高,是平分线.若则=_____18.“x的与x的和不超过5”用不等式表示为____.三、解答题(共66分)19.(10分)已知:等边三角形,交轴于点,,,,,且、满足.(1)如图,求、的坐标及的长;(2)如图,点是延长线上一点,点是右侧一点,,且.连接.求证:直线必过点关于轴对称的对称点;(3)如图,若点在延长线上,点在延长线上,且,求的值.20.(6分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图,点,,在同一条直线上,连结DC(1)请判断与的位置关系,并证明(2)若,,求的面积21.(6分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;

平均数(分)

中位数(分)

众数(分)

初中部

85

高中部

85

100

(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(8分)如图,在中,,,,平分交于,求的度数.23.(8分)解不等式(组),并将解集表示在数轴上:(1)解不等式:(2)解不等式组:24.(8分)解下列各题:(1)计算:;(2)分解因式:.25.(10分)(1)如图,在中,,于点,平分,你能找出与,之间的数量关系吗?并说明理由.(2)如图,在,,平分,为上一点,于点,这时与,之间又有何数量关系?请你直接写出它们的关系,不需要证明.26.(10分)图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:

;(2)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(3)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.

参考答案一、选择题(每小题3分,共30分)1、D【解析】∵4a2+kab+9b2=(2a)2+kab+(3b)2,∴kab=±2⋅2a⋅3b,解得k=±12.故选D.2、B【分析】先计算,再根据平方根的定义即可得到结论.【详解】解:∵,∴2的平方根是,故选:B.【点睛】本题考查平方根的定义,注意本题求的是的平方根,即2的平方根.3、C【详解】∵BO平分∠ABC,CO平分∠ACB,

∴∠OBC=∠ABC,∠OCB=∠ACB,

∴∠OBC+∠OCB=(∠ABC+∠ACB))=(180°-∠A)=90°−∠A,

根据三角形的内角和定理,可得

∠OBC+∠OCB+∠BOC=180°,

∴90°-∠A+∠BOC=180°,

∴∠BOC=90°+∠A.

故选C.【点睛】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;(2)此题还考查了角平分线的定义,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.4、D【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为12+22≠32,所以不能组成直角三角形;

B、因为52+62≠72,所以不能组成直角三角形;

C、因为12+42≠92,所以不能组成直角三角形;

D、因为52+122=132,所以能组成直角三角形.

故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、B【分析】根据等腰三角形两底角相等求出∠B=∠ADB,根据等边对等角可得∠C=∠CAD,然后利用三角形内角和定理列式进行计算即可解答.【详解】∵AB=AD,∠BAD=40°∴∠B=(180°-∠BAD)=(180°-40°)=70°∵AD=DC∴∠C=CAD在△ABC中,∠BAC+∠B+∠C=180°即40°+∠C+∠C+70°=180°解得:∠C=35°故选:B【点睛】本题主要考查等腰三角形的性质:等角三角形两底角相等、等边对等角,掌握等腰三角形的性质是解题的关键.6、B【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,则内角和是900度,n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【详解】解:根据题意,得

(n-2)•180=360×2+180,

解得:n=1.

则该多边形的边数是1.

故选:B.【点睛】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.7、C【详解】根据平角和直角定义,得方程x+y=90;根据∠3比∠3的度数大3°,得方程x=y+3.可列方程组为,故选C.考点:3.由实际问题抽象出二元一次方程组;3.余角和补角.8、C【分析】根据待定系数法求出一次函数解析式,再根据一次函数的图像与性质即可求解.【详解】把(0,2)、(1,-1)代入得解得∴一次函数解析式为y=-3x+2∵k=-3<0,∴随的增大而减小,故A错误;把代入,故B错误;一次函数y=-3x+2的图象经过第一、二、四象限,故C正确;令y=0,-3x+2=0,解得x=,一次函数y=-3x+2的图象与轴交于点,故D错误,故选C.【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法的应用.9、B【分析】三角形一个外角等于与它不相邻的两个内角的和,根据外角的性质即可得到结论.【详解】解:∵∠AEB=∠A+∠C=20°+50°=70°,∴∠ADB=∠AEB+∠B=70°+30°=100°.故选B.【点睛】本题主要考查了三角形的外角的性质,熟练掌握三角形外角的性质是解题的关键.10、A【分析】根据一次函数当k<0时,y随x的增大而减小解答.【详解】∵k=﹣2<0,∴y随x的增大而减小.∵﹣2<1,∴a>b.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.二、填空题(每小题3分,共24分)11、2【分析】根据角平分线的定义可得∠DBF=∠FBC,∠ECF=∠FCB,由平行线的性质可得∠DFB=∠FBC,∠EFC=∠FCB,等量代换可得∠DFB=∠DBF,∠EFC=∠ECF,根据等角对等边可得到DF=DB,EF=EC,再由ED=DF+EF结合已知即可求得答案.【详解】∵BF、CF分别是∠ABC和∠ACB的角平分线,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∴∠DFB=∠DBF,∠EFC=∠ECF,∴DF=DB,EF=EC,∵ED=DF+EF,,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.12、【解析】根据立方根的定义,可得被开方数,根据开方运算,可得算术平方根.【详解】解:=64,=1.

故答案为:1.【点睛】本题考查了立方根,先立方运算,再开平方运算.13、56°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACE和∠DCE,再根据角平分线的定义可得∠ABC=2∠DBC,∠ACE=2∠DCE,然后整理即可得解.【详解】由三角形的外角性质得,∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,∵BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∴∠A+∠ABC=2(∠D+∠DBC),整理得,∠A=2∠D,∵∠D=28°,∴∠A=2×28°=56°故答案为:56°.【点睛】本题考查了角平分线与三角形的外角性质,熟练运用外角性质将角度转化是解题的关键.14、c>d>a>b【解析】根据实数的乘方法则分别计算比较大小即可。【详解】∵a=-0.22=-0.04;b=-2-2=-=-=-0.25,c=(-)-2=4,d=(-)0=1,∴c>d>a>b.故本题答案应为:c>d>a>b.【点睛】本题的考点是实数的乘方及实数的大小比较,计算出每一个实数的乘方是解题的关键。15、【分析】先解第一个不等式得到,由于不等式组的解集为,根据同小取小得到.【详解】解:解①得,

∵不等式组的解集为,

∴.

故答案为:【点睛】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.16、28【详解】解:把这一组数据从小到大依次排列为20,24,27,28,31,34,38,最中间的数字是28,所以这组数据的中位数是28故答案为:2817、【分析】根据直角三角形内角和定理求出∠BAC,根据角平分线的定义求出∠BAE,结合图形计算即可.【详解】∵∴∵是平分线∴∵是边上的高,∴∴故答案为:.【点睛】本题考查了三角形的角度问题,掌握直角三角形内角和定理和角平分线的定义是解题的关键.18、x+x≤1.【分析】理解题意列出不等式即可.【详解】“x的与x的和不超过1”用不等式表示为x+x≤1,故答案为:x+x≤1.【点睛】此题主要考查了不等式的表示,解题的关键是正确理解题意.三、解答题(共66分)19、(1)A(-3,0),B(1,0),CD=2;(2)见解析;(3)6.【分析】(1)首先利用绝对值的非负性得出,即可得出点A、B的坐标;得出AB、BC,然后由∠CBA=60°得出∠ODB=30°,进而得出BD,得出CD;(2)首先判定△CEP、△ABC为等边三角形,进而判定△CBE≌△CAP,然后利用角和边的关系得出DO=OF,即可判定点D、F关于轴对称,直线必过点关于轴对称的对称点;(3)作DI∥AB,判定△CDI为等边三角形,然后判定△MDI≌△NDB,得出NB=MI,进而得出的值.【详解】(1)∵,即∴∴∴A(-3,0),B(1,0),∴AB=BC=4,∵∠CBA=60°∴∠ODB=30°∴BD=2OB=2∴CD=BC-BD=4-2=2;(2)延长EB交轴于F,连接CE,如图所示:∵,∴△CEP为等边三角形∴∠ECP=60°,CE=CP由(1)中得知,△ABC为等边三角形∴∠ACB=60°,CA=CB∴∠ACB+∠BCP=∠ECP+∠BCP∴∠ACP=∠BCE∴△CBE≌△CAP(SAS)∴∠CEB=∠CPA∴∠EBP=∠ECP=60°∴∠FBO=∠DBO=60°∴∠BFO=∠BDO=30°∴BD=BF∵BO⊥DF∴DO=OF∴点D、F关于轴对称∴直线必过点关于轴对称的对称点;(3)过点D作DI∥AB交AC于I,如图所示:由(2)中△ABC为等边三角形,则△CDI为等边三角形,∴DI=CD=DB∴∠MID=120°=∠DBN∴△MDI≌△NDB(AAS)∴NB=MI∴AN-AM=(AB+NB)-AM=AB+MI-AM=AB+AI=AB+BD=4+2=6【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质等知识,熟练掌握,即可解题.20、(1)DC⊥BE,见解析;(2)6【分析】(1)根据等腰直角三角形的性质可以得出△ABE≌△ACD,得出∠AEB=∠ADC,进而得出∠AEC=90°,就可以得出结论;(2)根据三角形的面积公式即可得到结论.【详解】(1)证明:∵△ABC和△ADE是等腰直角三角形∴AB=AC,AE=AD,∠BAC=∠EAD=90°∴∠BAC+∠EAC=∠DAE+∠EAC∴∠BAE=∠CAD在△ABE和△ACD中∴△ABE≌△ACD(SAS)∴∠AEB=∠ADC∵∠ADC+∠AFD=90°∴∠AEB+∠AFD=90°∵∠AFD=∠CFE∴∠AEB+∠CFE=90°∴∠FCE=90°∴DC⊥BE(2)解:∵CE=2,BC=4∴BE=6∵△ABE≌△ACD∴CD=BE=6∴.【点睛】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.21、(1)

平均数(分)

中位数(分)

众数(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:

平均数(分)

中位数(分)

众数(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,,∴<,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.22、15°【分析】首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠1.【详解】解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,

∴∠3=20°,

∵∠2=∠3,

∴∠2=10°,

∴∠ABC=180°-100°-10°=70°,

∵BE平分∠BAC,

∴∠ABE=35°,

∵∠1=∠2+∠ABE,

∴∠1=15°.【点睛】本题考查了角平分线定义、三角形内角和定理和三角形外角性质,能求出∠ABE的度数是解此题的关键.23、(1),数轴见解析;(2),数轴见解析.【分析】(1)根据去括号,移项合并同类项,系数化为1解不等式,然后将解集表示在数轴上即可;(2)先求出每个不等式的解集,取公共解集,然后将解集表示在数轴上即可.【详解】解:(1),,,,在数轴上表示为:;(2),解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集为﹣1≤x<3,在数轴上表示为:.【点睛】本题考查了解一元一次不等式和解一元一次不等式组、在数轴上表示不等式组的解集的应用,能正确运用不等式的性质解一元一次不等式和能根据不等式的解集找出不等式组的解集是解此题的关键.24

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论