版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若一元二次方程的两根为和,则的值等于()A.1 B. C. D.2.如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100° B.105° C.110° D.115°3.一个圆柱和一个正方体按如图所示放置,则其俯视图为()A. B.C. D.4.如果关于的方程是一元二次方程,那么的值为:()A. B. C. D.都不是5.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是()A.5 B.6 C.7 D.86.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为()A. B. C. D.7.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.78.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形 B.正三角形 C.平行四边形 D.正方形9.如图,在△中,∥,如果,,,那么的值为()A. B. C. D.10.某河堤横断面如图所示,堤高米,迎水坡的坡比是(坡比是坡面的铅直高度与水平宽度之比),则的长是()A.米 B.20米 C.米 D.30米二、填空题(每小题3分,共24分)11.若是方程的一个根,则式子的值为__________.12.如图,在△ABC中,AC=4,将△ABC绕点C按逆时针旋转30°得到△FGC,则图中阴影部分的面积为_____.13.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.14.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是_____.15.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.16.某校五个绿化小组一天的植树的棵数如下:9,10,12,x,1.已知这组数据的平均数是10,那么这组数据的方差是_____.17.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数关系式是y=60t-t2,在飞机着陆滑行中,最后2s滑行的距离是______m18.如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是____.三、解答题(共66分)19.(10分)甲、乙两人用如图所示的转盘(每个转盘被分成面积相等的6个扇形)做游戏,转动转盘停止时,得到指针所在区域的数字,若指针落在分界线上,则不计入次数,重新转动转盘记数.(1)任意转动转盘一次,求指针落在奇数区域的概率;(2)若游戏规则如下:甲乙分别转盘一次,记下两次指针所在区域数字,若两次的数字为一奇一偶,则甲赢;若两次的数字同为奇数或同为偶数,则乙赢.请用列表法或画树状图的方法计算甲、乙获胜的概率,并说明这个游戏规则是否公平.20.(6分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.(1)求,,的值;(2)求四边形的面积.21.(6分)如图,在矩形纸片中,已知,,点在边上移动,连接,将多边形沿折叠,得到多边形,点、的对应点分别为点,.(1)连接.则______,______°;(2)当恰好经过点时,求线段的长;(3)在点从点移动到点的过程中,求点移动的路径长.22.(8分)如图,从一块长80厘米,宽60厘米的铁片中间截去一个小长方形,使截去小长方形的面积是原来铁片面积的一半,并且剩下的长方框四周的宽度一样,求这个宽度.23.(8分)如图,海面上一艘船由西向东航行,在处测得正东方向上一座灯塔的最高点的仰角为,再向东继续航行到达处,测得该灯塔的最高点的仰角为.根据测得的数据,计算这座灯塔的高度(结果取整数).参考数据:,,.24.(8分)一个不透明的盒子中装有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了颜色外其余均相同.从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率.25.(10分)如图,在平面直角坐标系中,点的坐标为,点在第一象限,,点是上一点,,.(1)求证:;(2)求的值.26.(10分)已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为,∠A的度数为;(2)求证:∠ADC=2∠DAB.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先将一元二次方程变为一般式,然后根据根与系数的关系即可得出结论.【详解】解:将变形为根据根与系数的关系:故选B.【点睛】此题考查的是一元二次方程根与系数的关系,掌握两根之积等于是解决此题的关键.2、D【解析】根据平行四边形对角相等,邻角互补即可求解.【详解】解:在▱ABCD中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故选D.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键.3、D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:一个圆柱和一个正方体按如图所示放置,则其俯视图为左边是一个圆,右边是一个正方形.故选:D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4、C【分析】据一元二次方程的定义得到m-1≠0且m2-7=2,然后解不等式和方程即可得到满足条件的m的值.【详解】解:根据题意得m-1≠0且m2-7=2,
解得m=-1.
故选:C.【点睛】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.5、B【分析】设白球的个数为x,利用概率公式即可求得.【详解】设白球的个数为x,由题意得,从14个红球和x个白球中,随机摸出一个球是白球的概率为0.3,则利用概率公式得:,解得:,经检验,x=6是原方程的根,故选:B.【点睛】本题考查了等可能下概率的计算,理解题意利用概率公式列出等式是解题关键.6、D【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据相似三角形的判定得出△BEF∽△DCF,根据相似三角形的性质和三角形面积公式求出即可.【详解】解:∵四边形ABCD是平行四边形,E为AB的中点,∴AB=DC=2BE,AB∥CD,∴△BEF∽△DCF,∴==,∴DF=2BF,=()2=,∴=,∴S△BEF=S△DCF,S△DCB=S△DCF,∴==,故选D.【点睛】本题考查了相似三角形的性质和判定和平行四边形的性质,能熟记相似三角形的性质是解此题的关键.7、B【分析】直接利用相似三角形的性质得出,故,进而得出AM的长即可得出答案.【详解】解:由题意可得:OC∥AB,则△MBA∽△MCO,∴,即解得:AM=1.故选:B.【点睛】此题主要考查了相似三角形的应用,根据题意得出△MBA∽△MCO是解题关键.8、D【分析】在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.【详解】根据定义可得A、B为轴对称图形;C为中心对称图形;D既是轴对称图形,也是中心对称图形.故选:D.考点:轴对称图形与中心对称图形9、B【分析】由平行线分线段成比例可得到,从而AC的长度可求.【详解】∵∥∴∴∴故选B【点睛】本题主要考查平行线分线段成比例,掌握平行线分线段成比例是解题的关键.10、A【分析】由堤高米,迎水坡AB的坡比,根据坡度的定义,即可求得AC的长.【详解】∵迎水坡AB的坡比,∴,∵堤高米,∴(米).故选A.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,掌握坡比的概念是解题的关键二、填空题(每小题3分,共24分)11、1【分析】将a代入方程中得到,将其整体代入中,进而求解.【详解】由题意知,,即,∴,故答案为:1.【点睛】本题考查了方程的根,求代数式的值,学会运用整体代入的思想是解题的关键.12、【解析】根据旋转的性质可知△FGC的面积=△ABC的面积,观察图形可知阴影部分的面积就是扇形CAF的面积.【详解】解:由题意得,△FGC的面积=△ABC的面积,∠ACF=30º,AC=4,由图形可知,阴影部分的面积=△FGC的面积+扇形CAF的面积﹣△ABC的面积,∴阴影部分的面积=扇形CAF的面积=.故答案为:.【点睛】本题考查了旋转的性质,不规则图形及扇形的面积计算.13、3:2【解析】因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为:3:2.14、1【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=1.故答案为:1.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质.15、【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵theorem中的7个字母中有2个字母e,∴任取一张,那么取到字母e的概率为.16、2【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+1)=10,解得:x=11,∴S2=[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(1﹣10)2],=×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、6【分析】先求出飞机停下时,也就是滑行距离最远时,s最大时对应的t值,再求出最后2s滑行的距离.【详解】由题意,y=60t-t2,=−(t−20)2+600,即当t=20秒时,飞机才停下来.∴当t=18秒时,y=−(18−20)2+600=594m,故最后2s滑行的距离是600-594=6m故填:6.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=20时,s取最大值,再根据题意进行求解.18、1【分析】根据菱形的面积公式即可求解.【详解】∵菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,∴菱形ABCD的面积为AC×BD=×6×8=1,故答案为:1.【点睛】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.三、解答题(共66分)19、(1);(2)游戏规则公平,理由详见解析【分析】(1)直接根据概率公式求解即可得出答案;
(2)根据题意画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:(1)P(指针落在奇数区域)=.(2)列表如下:(画树形图评分方案同列表)1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知,P(甲获胜)=P(一奇一偶)=,P(乙获胜)=P(同奇或同偶)=,P(甲获胜)=P(乙获胜)=,所以,游戏规则公平【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20、(1),,.(2)6【解析】(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.【详解】解:(1)∵点在上,∴,∵点在上,且,∴.∵过,两点,∴,解得,∴,,.(2)如图,延长,交于点,则.∵轴,轴,∴,,∴,,∴.∴四边形的面积为6.【点睛】考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.21、(1),30;(2);(3)的长【分析】(1)直接利用勾股定理可求出AC的长,再利用特殊角的三角函数值可得出DAC的度数(2)设CE=x,则DE=,根据已知条件得出,再利用相似三角形对应线段成比例求解即可.(3)点运动的路径长为的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC∵∴(2)由已知条件得出,,,易证∴∴∴(3)如图所示,运动的路径长为的长由翻折得:∴∴的长【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解.22、长方框的宽度为10厘米【分析】设长方框的宽度为x厘米,则减去小长方形的长为(80﹣2x)厘米,宽为(60﹣2x)厘米,根据长方形的面积公式结合截去小长方形的面积是原来铁片面积的一半,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:设长方框的宽度为x厘米,则减去小长方形的长为(80﹣2x)厘米,宽为(60﹣2x)厘米,依题意,得:(80﹣2x)(60﹣2x)=×80×60,整理,得:x2﹣70x+600=0,解得:x1=10,x2=60(不合题意,舍去).答:长方框的宽度为10厘米.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23、这座灯塔的高度约为45m.【分析】在Rt△ADC和Rt△BDC中,根据三角函数AD、BD就可以用CD表示出来,再根据就得到一个关于DC的方程,解方程即可.【详解】解:如图,根据题意,,,,.∵在中,,∴.∵在中,,∴.又,∴.∴.答:这座灯塔的高度约为45m.【点睛】本题考查了解直角三角形的应用-----方向角的问题,列出关于CD的方程是解答本题的关键,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.24、.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的棋子颜色不同的情况,再利用概率公式即可求得答案.【详解】画树状图得:
∵共有9种等可能的结果,两次摸出的棋子颜色不同的有4种情况,
∴两次摸出的棋子颜色不同的概率为:.25、(1)证明见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题十一交变电流第1讲交变电流的产生和描述练习含答案
- 清算风险管理协议
- 油漆购销合同范例
- 九年级道德与法治上册 第一单元 富强与创新 第一课 踏上强国之路 第2框走向共同富裕教案1 新人教版
- 二年级品德与生活上册 玩中有发现教案1 首师大版
- 2024-2025学年新教材高中生物 第四章 生物的变异 第一节 基因突变可能引起性状改变教案(2)浙科版必修2
- 2024-2025学年高中历史 第一单元 第1课 第一次世界大战的爆发教案1 新人教版选修3
- 2024-2025学年高中地理 第二章 中国的主要自然灾害 2.1 自然资源利用中存在的问题教案 中图版选修6
- 广东省佛山市顺德区江义初级中学九年级化学上册 3.1 分子和原子教案3 (新版)新人教版
- 2023七年级语文下册 第四单元 写作 怎样选材配套教案 新人教版
- 急性化脓性胆囊炎查房课件
- 中国信通院-数字化供应链标杆案例汇编(2023)-2023.11
- 2019苏版GT14-2019马鞍板图集
- 2024年国药集团招聘笔试参考题库含答案解析
- 规培临床技能分层递进培训计划
- 成本效益分析汇报
- 委托购买设备协议书
- 大学音乐表演职业生涯规划书
- 硫酸脲氨化造粒复合肥料的生产技术
- 图像学完整分
- 神奇的数学:牛津教授给青少年的讲座
评论
0/150
提交评论