2022-2023学年山东省潍坊诸城市数学九上期末考试模拟试题含解析_第1页
2022-2023学年山东省潍坊诸城市数学九上期末考试模拟试题含解析_第2页
2022-2023学年山东省潍坊诸城市数学九上期末考试模拟试题含解析_第3页
2022-2023学年山东省潍坊诸城市数学九上期末考试模拟试题含解析_第4页
2022-2023学年山东省潍坊诸城市数学九上期末考试模拟试题含解析_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知反比例函数y=kx的图象经过点P(﹣2,3A.(﹣1,﹣6) B.(1,6) C.(3,﹣2) D.(3,2)2.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个 B.2个 C.3个 D.4个3.已知的直径是8,直线与有两个交点,则圆心到直线的距离满足()A. B. C. D.4.如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是()A. B. C. D.5.在Rt△ABC中,∠C=90°,∠B=35°,AB=3,则BC的长为()A.3sin35° B. C.3cos35° D.3tan35°6.下列4个图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.7.一个不透明的口袋中放着若干个红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,从口袋中随机取出一个球,取出红球的概率是.如果袋中共有32个小球,那么袋中的红球有()A.4个 B.6个 C.8个 D.10个8.如图,要测量小河两岸相对两点、宽度,可以在小河边的垂线上取一点,则得,,则小河的宽等于()A. B. C. D.9.下列几何图形不是中心对称图形的是()A.平行四边形 B.正五边形 C.正方形 D.正六边形10.将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+3二、填空题(每小题3分,共24分)11.若关于的一元二次方程有实数根,则的取值范围是_____.12.将抛物线向左平移个单位,得到新的解析式为________.13.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转45°后得到正方形,继续旋转至2020次得到正方形,那点的坐标是__________.14.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是和,则动力(单位:)关于动力臂(单位:)的函数解析式为______.15.如图,P是等边△ABC内的一点,若将△PAC绕点A按逆时针方向旋转到△P'AB,则∠PAP'=_____.16.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+x+,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.17.为了估计一个不透明的袋子中白球的数量袋中只有白球,现将5个红球放进去这些球除颜色外均相同随机摸出一个球记下颜色后放回每次摸球前先将袋中的球摇匀,通过多次重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋中白球的个数大约为______.18.已知二次函数的图象与x轴有交点,则k的取值范围是__________三、解答题(共66分)19.(10分)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.20.(6分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.21.(6分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.22.(8分)(1)计算;(2)解不等式.23.(8分)东坡商贸公司购进某种水果成本为20元/,经过市场调研发现,这种水果在未来48天的销售单价(元/)与时间(天)之间的函数关系式,为整数,且其日销售量()与时间(天)的关系如下表:时间(天)1361020…日销售量()11811410810080…(1)已知与之间的变化符合一次函数关系,试求在第30天的日销售量;(2)哪一天的销售利润最大?最大日销售利润为多少?24.(8分)倡导全民阅读,建设书香社会.(调查)目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%.(百度百科)某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平.(问题解决)(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;(2)国家倡导全民阅读,建设书香社会.预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x.25.(10分)如图,在由边长为1个单位长度的小正方形组成的网格图中,△ABC的顶点都在网格线交点上.(1)图中AC边上的高为个单位长度;(2)只用没有刻度的直尺,在所给网格图中按如下要求画图(保留必要痕迹):①以点C为位似中心,把△ABC按相似比1:2缩小,得到△DEC;②以AB为一边,作矩形ABMN,使得它的面积恰好为△ABC的面积的2倍.26.(10分)如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB∥x轴,点A的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.

参考答案一、选择题(每小题3分,共30分)1、C【解析】先根据点(-2,3),在反比例函数y=k的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.【详解】∵反比例函数y=kx的图象经过点(﹣2,3)∴k=2×3=-6,A.∵(-6)×(-1)=6≠-6,∴此点不在反比例函数图象上;B.∵1×6=6≠-6,∴此点不在反比例函数图象上;C.∵3×(-2)=-6,∴此点在反比例函数图象上;D.∵3×2=6≠-6,∴此点不在反比例函数图象上。故答案选:C.【点睛】本题考查的知识点是反比例函数图像上点的坐标特点,解题的关键是熟练的掌握反比例函数图像上点的坐标特点.2、C【解析】根据黄金分割的概念和黄金比值进行解答即可得.【详解】∵点C数线段AB的黄金分割点,且AC>BC,∴AC=AB,故①正确;由AC=AB,故②错误;BC:AC=AC:AB,即:AB:AC=AC:BC,③正确;AC≈0.618AB,故④正确,故选C.【点睛】本题考查了黄金分割,理解黄金分割的概念,熟记黄金分割的比为是解题的关键.3、B【分析】先求出圆的半径,再根据直线与圆的位置关系与d和r的大小关系即可得出结论.【详解】解:∵的直径是8∴的半径是4∵直线与有两个交点∴0≤d<4(注:当直线过圆心O时,d=0)故选B.【点睛】此题考查的是根据圆与直线的位置关系求圆心到直线的距离的取值范围,掌握直线与圆的位置关系与d和r的大小关系是解决此题的关键.4、A【分析】由几何体的俯视图观察原立体图形中正方体的位置关系【详解】由俯视图可以看出一共3列,右边有前后2排,后排是2个小正方体,前面一排有1个小正方体,其他两列都是1个小正方体,由此可判断出这个几何体的主视图是A.故选A.5、C【分析】根据余弦定义求解即可.【详解】解:如图,∵∠C=90°,∠B=35°,AB=3,cos35°=,∴BC=3cos35°.故选:C.【点睛】本题考查了锐角三角函数,属于基础题型,熟练掌握余弦的定义是解此题的关键.6、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既不是轴对称图形,也不是中心对称图形,故此选项错误;D、既是轴对称图形,也是中心对称图形,不符合题意,故此选项错误.故选A.【点睛】此题主要考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、C【解析】根据概率公式列方程求解即可.【详解】解:设袋中的红球有x个,根据题意得:,解得:x=8,故选C.【点睛】此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8、C【分析】利用∠ABC的正切函数求解即可.【详解】解:∵AC⊥CD,,,∴小河宽AC=BC·tan∠ABC=100tan50°(m).​故选C.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.9、B【分析】根据中心对称图形的定义如果一个图形绕着一个点旋转180°后能够与原图形完全重合即是中心对称图形,这个点叫做对称点.【详解】解:根据中心对称图形的定义来判断:A.平行四边形绕着对角线的交点旋转180°后与原图形完全重合,所以平行四边形是中心对称图形;B.正五边形无论绕着那个点旋转180°后与原图形都不能完全重合,所以正五边形不是中心对称图形;C.正方形绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形;D.正六边形是绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形.故选:B【点睛】本题考查了中心对称图形的判断方法.中心对称图形是一个图形,它绕着图形中的一点旋转180°后与原来的图形完全重合.10、B【解析】解:∵将抛物线y=﹣(x+1)2+1向右平移2个单位,∴新抛物线的表达式为y=﹣(x+1﹣2)2+1=﹣(x﹣1)2+1.故选B.二、填空题(每小题3分,共24分)11、且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可.【详解】解:根据题意得且,

解得:且k≠1.

故答案是:且k≠1.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.12、【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】抛物线的顶点坐标为(﹣1,﹣3),向左平移2个单位后的抛物线的顶点坐标为(﹣3,﹣3),所以,平移后的抛物线的解析式为.故答案为:.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.13、(-1,-1)【分析】连接OB,根据图形可知,点B在以点O为圆心、、OB为半径的圆上运用,将正方形OABC绕点O逆时针依次旋转45°,可得点B的对应点坐标,根据图形及对应点的坐标发现是8次一个循环,进而得出结论.【详解】解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理可得,由旋转的性质得:将正方形OABC绕点O逆时针依次旋转45°,得:,∴,,,,…,可发现8次一循环,∵,∴点的坐标为,故答案为.【点睛】本题考查了几何图形的规律探究,根据计算得出“8次一个循环”是解题的关键.14、【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【详解】∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则.故答案为:.【点睛】此题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.15、60°【解析】试题分析:根据旋转图形的性质可得:∠PAP′=∠BAC=60°.考点:旋转图形的性质16、310【分析】利用配方法将函数解析式转化为顶点式,利用二次函数的性质,可求得铅球行进的最大高度;铅球推出后落地时,高度y=0,把实际问题可理解为当y=0时,求得x的值就是铅球落地时的水平距离.【详解】∵y=﹣x2+x+,∴y=﹣(x﹣4)2+3因为﹣<0所以当x=4时,y有最大值为3.所以铅球推出后最大高度是3m.令y=0,即0=﹣(x﹣4)2+3解得x1=10,x2=﹣2(舍去)所以铅球落地时的水平距离是10m.故答案为3、10.【点睛】此题考查了函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解.正确解答本题的关键是掌握二次函数的性质.17、20个【解析】∵通过大量重复摸球试验后发现,摸到红球的频率是0.2,口袋中有5个红球,∵假设有x个白球,∴=0.2,解得:x=20,∴口袋中有白球约有20个.故答案为20个.18、k≤4且k≠1【分析】根据二次函数的定义和图象与x轴有交点则△≥0,可得关于k的不等式组,然后求出不等式组的解集即可.【详解】解:根据题意得k−1≠0且△=22−4×(k−1)×1≥0,解得k≤4且k≠1.故答案为:k≤4且k≠1.【点睛】本题考查了抛物线与x轴的交点问题:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2−4ac决定抛物线与x轴的交点个数:△>0时,抛物线与x轴有2个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.三、解答题(共66分)19、(1)AD=9;(2)AD=【分析】(1)连接BE,证明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)连接BE,证明△ACD∽△BCE,得到,求出BE的长,得到AD的长.【详解】解:(1)如图1,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE=9,∴AD=9;(2)如图2,连接BE,在Rt△ACB中,∠ABC=∠CED=30°,tan30°=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD,∴△ACD∽△BCE,∴,∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理.20、∠P=50°【解析】根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内角和定理求出即可.【详解】∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【点睛】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.21、(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)0;(2);【分析】(1)直接利用特殊角的三角函数值以及二次根式的性质和绝对值的性质分别化简得出答案;(2)先把不等式①按照去括号、移项、合并同类项、系数化为1的方法求出其解集;再把不等式②按照去分母、移项、合并同类项、系数化为1的方法求出其解集,最后求出其公共解集即可;【详解】解:(1)原式===0;(2)解不等式①得,x>﹣4;解不等式②得,;∴原不等式组的解集是;【点睛】本题主要考查了实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组,掌握实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组是解题的关键.23、(1)第30天的日销售量为;(2)当时,【分析】(1)设y=kt+b,利用待定系数法即可解决问题.(2)日利润=日销售量×每kg利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.【详解】(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,,∴y=-2t+1.将t=30代入上式,得:y=-2×30+1=2.所以在第30天的日销售量是2kg.(2)设第天的销售利润为元,则当时,由题意得,==∴t=20时,w最大值为120元.当时,∵对称轴t=44,a=2>0,∴在对称轴左侧w随t增大而减小,∴t=25时,w最大值为210元,综上所述第20天利润最大,最大利润为120元.【点睛】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24、(1)该社区有电子媒体阅读行为人数占人口总数的百分比为50%.(2)x为10%.【分析】(1)根据题意,利用某地传统媒体阅读率为80%,数字媒体阅读率为40%,而综合阅读率为90%,得出等式求出答案;(2)根据综合阅读人数﹣纸媒体阅读人数=只读电子媒体的人数,结合该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加列出方程即可求出答案.【详解】解:(1)设某地人数为a,既有传统媒体阅读又有数字媒体阅读的人数为y,则传统媒体阅读人数为0.8a,数字媒体阅读人数为0.4a.依题意得:0.8a+0.4a﹣y=0.9a,解得y=0.3a,∴传统媒体阅读又有数字媒体阅读的人数占总人口总数的百分比为30%.则该社区有电子媒体阅读行为人数占人口总数的百分比为=80%﹣30%=50%.(2)依题意得:0.9a(1+x)2+0.4a(1﹣x)2=0.5a(1+0.53),整理得:5x2+26x﹣2.65=0,解得:x1=0.1=10%,x2=﹣5.3(舍去),答:x为10%.【点睛】此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论