版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/3/2023第五章粘性流体动力学基础赵小虎12/30/2022第五章粘性流体动力学基础赵小虎五粘性流体动力学基础工程中的问题大多是粘性流体运动问题,实际的粘性流体运动现象远比理想流复杂,而控制粘性流体运动的基本方程及其求解也相对复杂。五粘性流体动力学基础工程中的问题大多是粘性流体运动问5.1流体的粘性及其对流动的影响1.流体的粘性,牛顿内摩擦定律★流体的粘性是指流体在运动状态下抵抗剪切变形的能力。★流体的剪切变形是指流体质点之间出现相对运动。因此流体的粘性是指抵抗流体质点之间的相对运动能力。★在静止状态下,流体不能承受剪力。但是在运动状态下,流体可以承受剪力,而且对于不同种流体所承受剪力大小是不同的。5.1流体的粘性及其对流动的影响1.流体的粘性,牛顿内5.1流体的粘性及其对流动的影响一般流层速度分布不是直线,如图所示。5.1流体的粘性及其对流动的影响一般流层速度分布5.1流体的粘性及其对流动的影响2.流体的粘性和粘性应力★流体的粘性是指流体抵抗剪切变形的能力,用流体的物性参数μ即动力粘性系数代表这种能力的大小。★流体的粘性应力只有当流体质点之间出现相对运动时才会体现出来。★静止流体即使具有较大的粘性(μ较大),也不存在剪切应力;粘性较小流体,若相对运动,也可具有较大的剪切应力;理想流体既不具有粘性(μ
=0),运动时也不体现剪切应力。5.1流体的粘性及其对流动的影响2.流体的粘性和粘性应流体的粘性及其对流动的影响3.流体的粘性对流动的影响(1)绕过平板的均直流动理想流流过无厚度平板时的流动特点:★不允许流体穿透平板(不穿透条件)★允许流体质点滑过平板★平板对流动不产生任何影响,平板对流动无阻滞作用,平板阻力为零流体的粘性及其对流动的影响3.流体的粘性对流动的影响流体的粘性及其对流动的影响粘性流体流过无厚度平板时的流动特点:★不允许流体穿透平板(满足不穿透条件)★也不允许流体在平板上滑移(满足不滑移条件,由于粘性,紧贴板面的流体质点粘附在平板上与板面无相对运动)★平板附近速度梯度很大,流层之间的粘性切应力不能忽略,这个区称为边界层区。★平板对流动起阻滞作用,平板阻力不为零。流体的粘性及其对流动的影响粘性流体流过无厚度平板时的流动特(2)圆柱绕流理想流体绕过圆柱时的流动特点:★在流体质点绕过圆柱的过程中,只有动能、压能的相互转换,而无机械能的损失。在圆柱面上压强分布对称,无阻力存在。(达朗贝尔疑题)流体的粘性及其对流动的影响(2)圆柱绕流流体的粘性及其对流动的影响流体的粘性及其对流动的影响粘性流体绕过圆柱时的流动特点:★物面近区由于粘性将产生边界层,由A点到B点的流程中将消耗部分动能用于克服阻力做功。★丧失部分机械能的边界层流动无法满足由B点到D点压力升高的要求,在BD流程内流经一段距离就会将全部动能消耗殆尽(一部分转化为压能,一部分克服摩擦阻力做功),于是在壁面某点速度变为零(S点)。
★流体将从这里离开物面进入主流场中,这种现象称为边界层分离,S点称为分离点。分离点下游流体发生倒流,形成旋涡区。流体的粘性及其对流动的影响粘性流体绕过圆柱时的流动特点:流体的粘性及其对流动的影响★旋涡区的出现,使得圆柱壁面压强分布发生了变化,前后不对称(如前驻点的压强要明显大于后驻点的压强),因此出现了压差阻力。★对绕圆球的粘性流动不仅存在摩擦阻力,还存在压差阻力,压差阻力是由于边界层分离后压强不平衡造成的,但本质上仍然是由于粘性造成的。★理想流假设撇开粘性来处理问题是一种很有价值的合乎逻辑的抽象,可成功解决与粘性关系不大的升力等问题,而与粘性关系密切的阻力等问题则需用粘性流体力学及其简化理论来解决流体的粘性及其对流动的影响★旋涡区的出现,使得圆柱壁面压强5.2粘流5.2粘流的流动状态(1)雷诺试验,1883①小V,稳定直线,界限分明②V↑,波纹,横向运动和振荡③V↑,水线破裂、完全掺混④V↓,恢复5.2粘流5.2粘流的流动状态①流态从层流到湍流的过渡称为转捩。②实验表明流态的转捩不是单单取决于某一个流动参数V,μ等,而是取决于无量纲的相似组合参数雷诺数,记为Re。③在非管道流动中也存在层流与湍流这两种不同的流态,从层流到湍流的转捩也与雷诺数大小有关。④实验发现,随着雷诺数增加而呈现的不同流态(层流或湍流)对于流动的摩擦阻力、流动损失、速度分布等影响很大。⑤雷诺数的物理意义:雷诺数代表作用在流体微团上的惯性力与粘性力之比。用于判断何种因素占主导作用层流与湍流①流态从层流到湍流的过渡称为转捩。层流与湍流管中层流与湍流的对比抛物线分布对数分布层流Re<2100湍流Re>4000
层流与湍流管中层流与湍流的对比抛物线分布层流层流与湍流管中层流管中湍流1.Re2.外观3.质量与动量交换4.速度分布5.损失6.剪应力较大流动紊乱、不规则,外表粗糙在纵向和横向存在较大的微团宏观质量、动量交换平均速度是较饱满的对数分布,壁面附近速度和梯度相对较大随Re增加转捩时损失增加牛顿应力及雷诺应力较小色线规则,流动分层,外表光滑流层间只限于分子间的较小的扩散较尖瘦的抛物线分布,壁面附近速度和梯度都相对较小随Re增加而降低牛顿应力层流与湍流管中层流管中湍流1.Re较大较小层5.3粘性流体的应力状态1、理想流体和粘性流体作用面受力差别★静止或理想流体内部任意面上只有法向力,无切向力★粘性流体内部任意面上力既有正向力,也有切向力5.3粘性流体的应力状态1、理想流体和粘性流体作用面受力差粘性流体的应力状态在粘性流体运动中,过任意一点任意方向单位面积上的表面力不一定垂直于作用面,可分解为法向应力和切应力。如果作用面的法线方向与坐标轴重合,则合应力可分解为三个分量,分别为法应力分量和切应力分量。粘性流体的应力状态在粘性流体运动中,过任意一点任意方向单位面粘性流体的应力状态由此可见,用两个下标可把各个应力分量的作用面方位和投影方向表示清楚。其中第一个下标表示作用面的法线方向,第二个下标表示应力分量的投影方向。从而三个面的合应力可表示为x面
:y面:z面:如果在同一点上给定三个相互垂直坐标面上的应力,那么过该点任意方向作用面上的应力可通过坐标变换唯一确定。粘性流体的应力状态由此可见,用两个下标可把各个应力分量的作用粘性流体的应力状态上述九个应力分量可写为:有的教材将法向应力记为:这九个应力分量并不全部独立,其中的六个切向应力是两两相等的,所以独立的一共是三个法向的,三个切向的。粘性流体的应力状态上述九个应力分量可写为:粘性流体的应力状态关于应力的几个要点:(1)在理想流体及静止流体中不存在切应力,三个法向应力相等(各向同性),等于该点压强的负值。即:(2)在粘性运动流体中,任意一点的任何三个相互垂直面上的法向应力之和为一个不变量,并定义此不变量的平均值为该点的平均压强的负值。即:(3)在粘性运动流体中,任意面上的切应力一般不为零。粘性流体的应力状态关于应力的几个要点:广义牛顿内摩擦定理(本构关系)Stokes(1845年)根据牛顿内摩擦定理的启发(粘性流体作直线层状流动时,层间切应力与速度梯度成正比),在一些合理的假设下将牛顿内摩擦定律进行推广,提出广义牛顿内摩擦定理----应力应变率关系(本构关系):广义牛顿内摩擦定理(本构关系)Stokes(1845年)根据广义牛顿内摩擦定理(本构关系)不可压流体:连续性方程代入()=0):不论是否可压缩流体,本构关系都满足:广义牛顿内摩擦定理(本构关系)不可压流体:5.4粘性流体运动方程---Navier-Stokes方程推导:(1)取一个微元六面体进行分析,以x方向为例,建立运动方程。(2)粘流:法向应力+切向应力。(3)ABCD/A’B’C’D法向力差:(4)ABB’A’/CDC’D’切向力差:(5)ADA’D’/BCB’C’切向力差:5.4粘性流体运动方程---Navier-Stokes方粘性流体运动方程---Navier-Stokes方程设单位质量彻体力分量为:fx,fy,fz:根据牛顿第二定律:可得:
粘性流体运动方程---Navier-Stokes方程设单位质粘性流体运动方程---Navier-Stokes方程将广义牛顿内摩擦定律表达式代入,则:其中,为拉普拉斯算子:对理想流体,N-S方程简化为欧拉方程。粘性流体运动方程---Navier-Stokes方程将广义牛粘性流体运动方程---Navier-Stokes方程对不可压流体,连续方程:则不可压流的N-S方程:向量形式:粘性流体运动方程---Navier-Stokes方程对不可压粘性对流动的影响小结(1)粘性应力及其与物面的粘附条件(无滑移条件)是粘性流体运动有别与理想流体运动的主要标志。(2)粘性是产生摩擦阻力的根本原因,粘性边界层在一定条件下的分离是形成压差阻力的根本原因。(3)粘性流体在流动过程中必然要克服内摩擦力做功,因此流体粘性是流体发生机械能损失的根源。(4)对于研究阻力、边界层及其分离、旋涡及其扩散等问题时,粘性起主导作用不能忽略。粘性对流动的影响小结(1)粘性应力及其与物面的粘附5.5边界层基础已知流动Re数用以表征流体质点的惯性力与粘性力比值因此,在高Re数下,流体运动的惯性力远远大于粘性力,可忽略粘性力的作用。1904年普朗特(1875-1953)
通过大量实验发现:虽然整体流动的Re数很大,但在靠近物面的薄层流体内,流场的特征与理想流动相差甚远,沿着法向存在很大的速度梯度,粘性力无法忽略。这一物面近区粘性力起重要作用的薄层称为边界层(Boundarylayer)5.5边界层基础已知流动Re数用以表征流体质点的惯性力与5.5边界层基础流场分区基本思想:(1)在远离物体的流体流动区域忽略粘性的影响。(2)在靠近物面的薄层内,粘性力与惯性力同量级,粘性力的作用不能忽略,该薄层称为边界层。边界层内按粘流对待)。★边界层概念的提出,为如何考虑粘性的作用开辟了途径。位流区粘流区5.5边界层基础流场分区基本思想:位流区粘流区5.5边界层基础(1)边界层厚度定义边界层区与主流区之间无严格明显的界线,通常以速度达到主流区速度的0.99U作为边界层的外缘。由边界层外缘到物面的垂直距离称为边界层名义厚度,用δ表示。(2)边界层厚度的量级估计根据边界层内粘性力与惯性力同量级的条件,可估算边界层的厚度量级。以平板绕流为例说明。设来流的速度为U,在x方向的长度为L,边界层厚度为δ。
可见在高Re,边界层的厚度远小于被绕流物体的特征长度。5.5边界层基础(1)边界层厚度定义5.5边界层基础★实际流动中边界层流动与理想流动渐近过渡,边界层外边界线实际上是不存在的。★边界层的外边界线不是流线,允许流体穿过边界层边界线流动。5.5边界层基础★实际流动中边界层流动与理想流动渐近过边界层分离1、边界层分离现象边界层中的流体质点受惯性力、粘性力和压力的作用,其中(1)惯性力与粘性力的相对大小决定了粘性影响的相对区域大小,或边界层厚度的大小;(2)粘性力的作用始终是阻滞流体质点运动,使流体质点减速,失去动能;(3)压力的作用取决于绕流物体的形状和流道形状,顺压梯度有助于流体加速前进,而逆压梯度阻碍流体运动。边界层分离1、边界层分离现象边界层分离前面介绍过,圆柱绕流边界层内流体质点要克服粘性力做功而消耗机械能,在逆压区内流体不能无损失的减速到达D点,而是在某处使速度降为零,从而造成流动从璧面分离。分离点下游区域受逆压梯度作用而发生倒流。分离点定义为紧邻壁面顺流区与倒流区的分界点。边界层分离前面介绍过,圆柱绕流边界层内边界层分离★边界层分离的必要条件是:存在逆压梯度和粘性剪切层★仅有粘性的阻滞作用而无逆压梯度,不会分离。因为无反推力使边界层流体进入到外流区。所以,零压梯度和顺压梯度的流动不可能发生边界层分离。★只有逆压梯度而无粘性的剪切作用,同样也不会发生分离现象,因为无阻滞作用,运动流体不可能消耗动能而滞止下来。边界层分离★边界层分离的必要条件是:存在逆压梯度和粘性边界层分离气流绕翼型的流动与边界层分离现象:一定迎角时上翼面最大速度点后的减速增压区将出现分离,一方面改变了绕流的形状使升力大为降低;另一方面造成了减速增压过程的机械能有损失。实验表明,分离区的压强接近分离点的压强,从而造成了较大的压差阻力,同时还存在摩擦阻力。翼型小攻角时不分离流谱翼型大攻角时分离流谱
边界层分离气流绕翼型的流动与边界层分离现象:一定边界层分离★根据边界层方程,在壁面上(1)顺压梯度:压力沿程减小,速度沿程增加。在壁面处,u关于
y是凸曲线:在边界层的外边界上,有:则:边界层内的速度沿y方向单调增加,分布曲线无拐点,是一条向外凸的光滑曲线,流动是稳定的。边界层分离★根据边界层方程,在壁面上边界层分离(2)零压梯度:随着速度沿程增加,压力沿程减小,在壁面某处速度达到最大,压强达最小,此后流动将逆压而行。在最小压强点有:说明物面是速度分布的拐点,在边界层的外边界上仍然有:与顺压区速度分布相比,速度分布开始变尖瘦。uyyy边界层分离(2)零压梯度:随着速度沿程增加,压力沿程减小边界层分离(3)逆压梯度区,压力沿程增加,速度沿程减小。在壁面处,有另一方面,在边界层的外边界上,仍然有于是在边界层内,速度分布曲率从正变为负,在某点处必然有这是速度分布的拐点。拐点的出现改变了速度分布的形状,在拐点以上为外凸型,在拐点以下为外凹型,存在拐点的速度分布型是不稳定的。边界层分离(3)逆压梯度区,压力沿程增加,速度沿程减小。边界层分离可见随着流体质点向下游流动从零压梯度点进入逆压区,拐点从物面上向外边界移动,物面近区的速度分布愈来愈瘦小(璧面速度梯度du/dy逐步降低)。当拐点移动到空间某点时物面处出现:该点称为分离点。其速度及其梯度分布曲线为:yyyu边界层分离可见随着流体质点向下游流动从零压梯度点进入逆压区边界层分离★在分离点下游区,有:★发生了回流,回流把主流推离壁面:★由上分析可见,逆压梯度愈大,边界层分离愈靠前。边界层分离后,流动特征发生了变化。如:(1)从分离点不断脱离出旋涡,在分离点下游形成不稳定的旋涡区,使主流区由原来的无涡区变成有涡。(2)在分离点后出现低压区,大大增加了绕流物体的阻力。yyuy边界层分离★在分离点下游区,有:yyuyyyuyyyyuyyuy随压强梯度变化,速度及其梯度分布的变化趋势对比:顺压,速度为饱满的外凸曲线零压梯度,璧面为拐点,速度变尖瘦逆压,拐点移向空间,速度更加尖瘦,尚未分离逆压、璧面速度梯度为零,分离点逆压、速度梯度为负,倒流yyuyyyyuyyuy随压强梯度变化,速度及顺1/3/2023第五章粘性流体动力学基础赵小虎12/30/2022第五章粘性流体动力学基础赵小虎五粘性流体动力学基础工程中的问题大多是粘性流体运动问题,实际的粘性流体运动现象远比理想流复杂,而控制粘性流体运动的基本方程及其求解也相对复杂。五粘性流体动力学基础工程中的问题大多是粘性流体运动问5.1流体的粘性及其对流动的影响1.流体的粘性,牛顿内摩擦定律★流体的粘性是指流体在运动状态下抵抗剪切变形的能力。★流体的剪切变形是指流体质点之间出现相对运动。因此流体的粘性是指抵抗流体质点之间的相对运动能力。★在静止状态下,流体不能承受剪力。但是在运动状态下,流体可以承受剪力,而且对于不同种流体所承受剪力大小是不同的。5.1流体的粘性及其对流动的影响1.流体的粘性,牛顿内5.1流体的粘性及其对流动的影响一般流层速度分布不是直线,如图所示。5.1流体的粘性及其对流动的影响一般流层速度分布5.1流体的粘性及其对流动的影响2.流体的粘性和粘性应力★流体的粘性是指流体抵抗剪切变形的能力,用流体的物性参数μ即动力粘性系数代表这种能力的大小。★流体的粘性应力只有当流体质点之间出现相对运动时才会体现出来。★静止流体即使具有较大的粘性(μ较大),也不存在剪切应力;粘性较小流体,若相对运动,也可具有较大的剪切应力;理想流体既不具有粘性(μ
=0),运动时也不体现剪切应力。5.1流体的粘性及其对流动的影响2.流体的粘性和粘性应流体的粘性及其对流动的影响3.流体的粘性对流动的影响(1)绕过平板的均直流动理想流流过无厚度平板时的流动特点:★不允许流体穿透平板(不穿透条件)★允许流体质点滑过平板★平板对流动不产生任何影响,平板对流动无阻滞作用,平板阻力为零流体的粘性及其对流动的影响3.流体的粘性对流动的影响流体的粘性及其对流动的影响粘性流体流过无厚度平板时的流动特点:★不允许流体穿透平板(满足不穿透条件)★也不允许流体在平板上滑移(满足不滑移条件,由于粘性,紧贴板面的流体质点粘附在平板上与板面无相对运动)★平板附近速度梯度很大,流层之间的粘性切应力不能忽略,这个区称为边界层区。★平板对流动起阻滞作用,平板阻力不为零。流体的粘性及其对流动的影响粘性流体流过无厚度平板时的流动特(2)圆柱绕流理想流体绕过圆柱时的流动特点:★在流体质点绕过圆柱的过程中,只有动能、压能的相互转换,而无机械能的损失。在圆柱面上压强分布对称,无阻力存在。(达朗贝尔疑题)流体的粘性及其对流动的影响(2)圆柱绕流流体的粘性及其对流动的影响流体的粘性及其对流动的影响粘性流体绕过圆柱时的流动特点:★物面近区由于粘性将产生边界层,由A点到B点的流程中将消耗部分动能用于克服阻力做功。★丧失部分机械能的边界层流动无法满足由B点到D点压力升高的要求,在BD流程内流经一段距离就会将全部动能消耗殆尽(一部分转化为压能,一部分克服摩擦阻力做功),于是在壁面某点速度变为零(S点)。
★流体将从这里离开物面进入主流场中,这种现象称为边界层分离,S点称为分离点。分离点下游流体发生倒流,形成旋涡区。流体的粘性及其对流动的影响粘性流体绕过圆柱时的流动特点:流体的粘性及其对流动的影响★旋涡区的出现,使得圆柱壁面压强分布发生了变化,前后不对称(如前驻点的压强要明显大于后驻点的压强),因此出现了压差阻力。★对绕圆球的粘性流动不仅存在摩擦阻力,还存在压差阻力,压差阻力是由于边界层分离后压强不平衡造成的,但本质上仍然是由于粘性造成的。★理想流假设撇开粘性来处理问题是一种很有价值的合乎逻辑的抽象,可成功解决与粘性关系不大的升力等问题,而与粘性关系密切的阻力等问题则需用粘性流体力学及其简化理论来解决流体的粘性及其对流动的影响★旋涡区的出现,使得圆柱壁面压强5.2粘流5.2粘流的流动状态(1)雷诺试验,1883①小V,稳定直线,界限分明②V↑,波纹,横向运动和振荡③V↑,水线破裂、完全掺混④V↓,恢复5.2粘流5.2粘流的流动状态①流态从层流到湍流的过渡称为转捩。②实验表明流态的转捩不是单单取决于某一个流动参数V,μ等,而是取决于无量纲的相似组合参数雷诺数,记为Re。③在非管道流动中也存在层流与湍流这两种不同的流态,从层流到湍流的转捩也与雷诺数大小有关。④实验发现,随着雷诺数增加而呈现的不同流态(层流或湍流)对于流动的摩擦阻力、流动损失、速度分布等影响很大。⑤雷诺数的物理意义:雷诺数代表作用在流体微团上的惯性力与粘性力之比。用于判断何种因素占主导作用层流与湍流①流态从层流到湍流的过渡称为转捩。层流与湍流管中层流与湍流的对比抛物线分布对数分布层流Re<2100湍流Re>4000
层流与湍流管中层流与湍流的对比抛物线分布层流层流与湍流管中层流管中湍流1.Re2.外观3.质量与动量交换4.速度分布5.损失6.剪应力较大流动紊乱、不规则,外表粗糙在纵向和横向存在较大的微团宏观质量、动量交换平均速度是较饱满的对数分布,壁面附近速度和梯度相对较大随Re增加转捩时损失增加牛顿应力及雷诺应力较小色线规则,流动分层,外表光滑流层间只限于分子间的较小的扩散较尖瘦的抛物线分布,壁面附近速度和梯度都相对较小随Re增加而降低牛顿应力层流与湍流管中层流管中湍流1.Re较大较小层5.3粘性流体的应力状态1、理想流体和粘性流体作用面受力差别★静止或理想流体内部任意面上只有法向力,无切向力★粘性流体内部任意面上力既有正向力,也有切向力5.3粘性流体的应力状态1、理想流体和粘性流体作用面受力差粘性流体的应力状态在粘性流体运动中,过任意一点任意方向单位面积上的表面力不一定垂直于作用面,可分解为法向应力和切应力。如果作用面的法线方向与坐标轴重合,则合应力可分解为三个分量,分别为法应力分量和切应力分量。粘性流体的应力状态在粘性流体运动中,过任意一点任意方向单位面粘性流体的应力状态由此可见,用两个下标可把各个应力分量的作用面方位和投影方向表示清楚。其中第一个下标表示作用面的法线方向,第二个下标表示应力分量的投影方向。从而三个面的合应力可表示为x面
:y面:z面:如果在同一点上给定三个相互垂直坐标面上的应力,那么过该点任意方向作用面上的应力可通过坐标变换唯一确定。粘性流体的应力状态由此可见,用两个下标可把各个应力分量的作用粘性流体的应力状态上述九个应力分量可写为:有的教材将法向应力记为:这九个应力分量并不全部独立,其中的六个切向应力是两两相等的,所以独立的一共是三个法向的,三个切向的。粘性流体的应力状态上述九个应力分量可写为:粘性流体的应力状态关于应力的几个要点:(1)在理想流体及静止流体中不存在切应力,三个法向应力相等(各向同性),等于该点压强的负值。即:(2)在粘性运动流体中,任意一点的任何三个相互垂直面上的法向应力之和为一个不变量,并定义此不变量的平均值为该点的平均压强的负值。即:(3)在粘性运动流体中,任意面上的切应力一般不为零。粘性流体的应力状态关于应力的几个要点:广义牛顿内摩擦定理(本构关系)Stokes(1845年)根据牛顿内摩擦定理的启发(粘性流体作直线层状流动时,层间切应力与速度梯度成正比),在一些合理的假设下将牛顿内摩擦定律进行推广,提出广义牛顿内摩擦定理----应力应变率关系(本构关系):广义牛顿内摩擦定理(本构关系)Stokes(1845年)根据广义牛顿内摩擦定理(本构关系)不可压流体:连续性方程代入()=0):不论是否可压缩流体,本构关系都满足:广义牛顿内摩擦定理(本构关系)不可压流体:5.4粘性流体运动方程---Navier-Stokes方程推导:(1)取一个微元六面体进行分析,以x方向为例,建立运动方程。(2)粘流:法向应力+切向应力。(3)ABCD/A’B’C’D法向力差:(4)ABB’A’/CDC’D’切向力差:(5)ADA’D’/BCB’C’切向力差:5.4粘性流体运动方程---Navier-Stokes方粘性流体运动方程---Navier-Stokes方程设单位质量彻体力分量为:fx,fy,fz:根据牛顿第二定律:可得:
粘性流体运动方程---Navier-Stokes方程设单位质粘性流体运动方程---Navier-Stokes方程将广义牛顿内摩擦定律表达式代入,则:其中,为拉普拉斯算子:对理想流体,N-S方程简化为欧拉方程。粘性流体运动方程---Navier-Stokes方程将广义牛粘性流体运动方程---Navier-Stokes方程对不可压流体,连续方程:则不可压流的N-S方程:向量形式:粘性流体运动方程---Navier-Stokes方程对不可压粘性对流动的影响小结(1)粘性应力及其与物面的粘附条件(无滑移条件)是粘性流体运动有别与理想流体运动的主要标志。(2)粘性是产生摩擦阻力的根本原因,粘性边界层在一定条件下的分离是形成压差阻力的根本原因。(3)粘性流体在流动过程中必然要克服内摩擦力做功,因此流体粘性是流体发生机械能损失的根源。(4)对于研究阻力、边界层及其分离、旋涡及其扩散等问题时,粘性起主导作用不能忽略。粘性对流动的影响小结(1)粘性应力及其与物面的粘附5.5边界层基础已知流动Re数用以表征流体质点的惯性力与粘性力比值因此,在高Re数下,流体运动的惯性力远远大于粘性力,可忽略粘性力的作用。1904年普朗特(1875-1953)
通过大量实验发现:虽然整体流动的Re数很大,但在靠近物面的薄层流体内,流场的特征与理想流动相差甚远,沿着法向存在很大的速度梯度,粘性力无法忽略。这一物面近区粘性力起重要作用的薄层称为边界层(Boundarylayer)5.5边界层基础已知流动Re数用以表征流体质点的惯性力与5.5边界层基础流场分区基本思想:(1)在远离物体的流体流动区域忽略粘性的影响。(2)在靠近物面的薄层内,粘性力与惯性力同量级,粘性力的作用不能忽略,该薄层称为边界层。边界层内按粘流对待)。★边界层概念的提出,为如何考虑粘性的作用开辟了途径。位流区粘流区5.5边界层基础流场分区基本思想:位流区粘流区5.5边界层基础(1)边界层厚度定义边界层区与主流区之间无严格明显的界线,通常以速度达到主流区速度的0.99U作为边界层的外缘。由边界层外缘到物面的垂直距离称为边界层名义厚度,用δ表示。(2)边界层厚度的量级估计根据边界层内粘性力与惯性力同量级的条件,可估算边界层的厚度量级。以平板绕流为例说明。设来流的速度为U,在x方向的长度为L,边界层厚度为δ。
可见在高Re,边界层的厚度远小于被绕流物体的特征长度。5.5边界层基础(1)边界层厚度定义5.5边界层基础★实际流动中边界层流动与理想流动渐近过渡,边界层外边界线实际上是不存在的。★边界层的外边界线不是流线,允许流体穿过边界层边界线流动。5.5边界层基础★实际流动中边界层流动与理想流动渐近过边界层分离1、边界层分离现象边界层中的流体质点受惯性力、粘性力和压力的作用,其中(1)惯性力与粘性力的相对大小决定了粘性影响的相对区域大小,或边界层厚度的大小;(2)粘性力的作用始终是阻滞流体质点运动,使流体质点减速,失去动能;(3)压力的作用取决于绕流物体的形状和流道形状,顺压梯度有助于流体加速前进,而逆压梯度阻碍流体运动。边界层分离1、边界层分离现象边界层分离前面介绍过,圆柱绕流边界层内流体质点要克服粘性力做功而消耗机械能,在逆压区内流体不能无损失的减速到达D点,而是在某处使速度降为零,从而造成流动从璧面分离。分离点下游区域受逆压梯度作用而发生倒流。分离点定义为紧邻壁面顺流区与倒流区的分界点。边界层分离前面介绍过,圆柱绕流边界层内边界层分离★边界层分离的必要条件是:存在逆压梯度和粘性剪切层★仅有粘性的阻滞作用而无逆压梯度,不会分离。因为无反推力使边界层流体进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年温州大客车从业资格证考试试题
- 2024年迪庆客运资格证考试题库下载
- 人教部编版二年级语文上册第22课《狐假虎威》精美课件
- 吉首大学《建筑设计Ⅴ》2021-2022学年第一学期期末试卷
- 吉首大学《场景设计》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷17
- 吉林艺术学院《艺术批评写作》2021-2022学年第一学期期末试卷
- 吉林艺术学院《全媒体文案创意写作》2021-2022学年第一学期期末试卷
- 签订宴会厅协议书范本范本
- 吉林艺术学院《CG模型设计》2021-2022学年第一学期期末试卷
- 2024公安机关人民警察高级执法资格考试题(解析版)
- 国开2024年秋《机电控制工程基础》形考任务4答案
- 加强学校食堂管理提高食品安全意识(培训课件)
- 2023-2024学年辽宁省沈阳126中八年级(上)期中数学试卷(含解析)
- 2010年度重庆市高等学校精品课程申报表 高电压技术
- 中日英刀具照表
- 第五高等学校教学名师奖(高职高专部分)候选人推荐表
- 昆虫分类表汇总
- 黑马王子量柱理论精华图解
- 预制场80T龙门吊验算书(36m)
- 铁路超限货物运输的规定
评论
0/150
提交评论