下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.2.下列手机手势解锁图案中,是中心对称图形的是(
)A. B. C. D.3.已知关于x的方程x2﹣3x+2k=0有两个不相等的实数根,则k的取值范围是()A.k> B.k< C.k<﹣ D.k<4.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A. B. C. D.5.如图,在平面直角坐标系xOy中,二次函数的图象经过点A,B,对系数和判断正确的是()A. B. C. D.6.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30° B.45° C.60° D.40°7.cos60°的值等于()A. B. C. D.8.如图,点在以为直径的上,若,,则的长为()A.8 B.6 C.5 D.9.如图,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD=130°,则∠DCE的度数为()A.45° B.50° C.65° D.75°10.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n=-2m B.n=- C.n=-4m D.n=-11.若关于的方程有两个相等的实数根,则的值是()A.-1 B.-3 C.3 D.612.如图,已知二次函数()的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③;④;其中正确的结论是()A.①③④ B.①②③ C.①②④ D.①②③④二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P是直线y=2x+2上的一动点,当以P为圆心,PO为半径的圆与△AOB的一条边所在直线相切时,点P的坐标为__________.14.某同学用描点法y=ax2+bx+c的图象时,列出了表:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y值,则这个错误的y值是_______.15.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度,然后用一根长为的小竹竿竖直的接触地面和门的内壁,并测得,则门高为__________.16.小明掷一枚硬币10次,有9次正面向上,当他掷第10次时,正面向上的概率是_____.17.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为__cm.18.若整数使关于的二次函数的图象在轴的下方,且使关于的分式方程有负整数解,则所有满足条件的整数的和为__________.三、解答题(共78分)19.(8分)已知一次函数(为常数,)的图象分别与轴、轴交于、B两点,且与反比例函数的图象交于、D两点(点在第二象限内,过点作轴于点(1)求的值(2)记为四边形的面积,为的面积,若,求的值20.(8分)“垃圾分类”越来越受到人们的关注,我市某中学对部分学生就“垃圾分类”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有人,条形统计图中的值为;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为;(3)若从对垃圾分类知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加垃圾分类知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.21.(8分)如图,在平面内。点为线段上任意一点.对于该平面内任意的点,若满足小于等于则称点为线段的“限距点”.(1)在平面直角坐标系中,若点.①在的点中,是线段的“限距点”的是;②点P是直线上一点,若点P是线段AB的“限距点”,请求出点P横坐标的取值范围.(2)在平面直角坐标系中,若点.若直线上存在线段AB的“限距点”,请直接写出的取值范围22.(10分)如图1,直线y=2x+2分别交x轴、y轴于点A、B,点C为x轴正半轴上的点,点D从点C处出发,沿线段CB匀速运动至点B处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△DEC′与△BOC的重叠部分面积为S,点D的运动时间为t(秒),S与t的函数图象如图2所示.(1)VD,C坐标为;(2)图2中,m=,n=,k=.(3)求出S与t之间的函数关系式(不必写自变量t的取值范围).23.(10分)如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点.连接,且.(1)求的值;(2)过点作,交反比例函数(其中)的图象于点,连接交于点,求的值.24.(10分)在平面直角坐标系中的两个图形与,给出如下定义:为图形上任意一点,为图形上任意一点,如果两点间的距离有最小值,那么称这个最小值为图形间的“和睦距离”,记作,若图形有公共点,则.(1)如图(1),,,⊙的半径为2,则,;(2)如图(2),已知的一边在轴上,在上,且,,.①是内一点,若、分别且⊙于E、F,且,判断与⊙的位置关系,并求出点的坐标;②若以为半径,①中的为圆心的⊙,有,,直接写出的取值范围.25.(12分)有三张卡片(形状、大小、质地都相同),正面分别写上整式.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片正面的整式作为分子,第二次抽取的卡片正面的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.26.已知二次函数的顶点坐标为,且经过点,设二次函数图象与轴交于点,求点的坐标.
参考答案一、选择题(每题4分,共48分)1、B【详解】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P=.故选B.考点:列表法与树状图法求概率.2、B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【分析】利用判别式的意义得到△=(﹣3)2﹣4•2k>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)2﹣4•2k>0,解得k<.故选:B.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.4、C【分析】过点B作BD⊥AC,交AC延长线于点D,利用正切函数的定义求解可得.【详解】如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选C.【点睛】本题主要考查三角函数的定义,解题的关键是掌握正切函数的定义:锐角A的对边a与邻边b的比叫做∠A的正切.5、D【分析】根据二次函数y=ax2+bx+1的图象经过点A,B,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax2+bx+1可知图象经过点(0,1),
∵二次函数y=ax2+bx+1的图象还经过点A,B,
则函数图象如图所示,
抛物线开口向下,∴a<0,,又对称轴在y轴右侧,即,∴b>0,故选D6、A【解析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=∠AOB=30°.【详解】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=∠AOB=30°.故选A.【点睛】此题考查了切线的性质:圆的切线垂直于经过切点的半径;以及圆周角定理:等弧所对的圆周角等于所对圆心角的一半.7、A【解析】试题分析:因为cos60°=,所以选:A.考点:特殊角的三角比值.8、D【分析】根据直径所对圆周角是直角,可知∠C=90°,再利用30°直角三角形的特殊性质解出即可.【详解】∵AB是直径,∴∠C=90°,∵∠A=30°,∴,.故选D.【点睛】本题考查圆周角的性质及特殊直角三角形,关键在于熟记相关基础知识.9、C【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质得出∠DCE=∠A,代入求出即可.【详解】∵∠BOD=130°,∴∠A=∠BOD=65°,∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=65°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质的应用,注意:圆内接四边形的对角互补,并且一个外角等于它的内对角.10、B【解析】试题分析:首先根据点C的坐标为(m,n),分别求出点A为(,n),点B的坐标为(-,-n),根据图像知B、C的横坐标相同,可得-=m.故选B点睛:此题主要考查了反比例函数的图像上的点的坐标特点,解答此题的关键是要明确:①图像上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在坐标系的图像上任取一点,过这个点向x轴、y轴分别作垂线.与坐标轴围成的矩形的面积是一个定值|k|.11、C【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求解即可.【详解】∵关于的方程有两个相等的实数根,
∴,
解得:.故选:C.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12、B【分析】①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,1),当x>3时,y<1,故①正确;②抛物线开口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则,令x=1得:y=﹣3a.∵抛物线与y轴的交点B在(1,2)和(1,3)之间,∴.解得:,故③正确;④.∵抛物线y轴的交点B在(1,2)和(1,3)之间,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,与2≤c≤3矛盾,故④错误.【详解】解:①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,1),当x>3时,y<1,故①正确;②抛物线开口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则,令x=1得:y=﹣3a.∵抛物线与y轴的交点B在(1,2)和(1,3)之间,∴.解得:,故③正确;④.∵抛物线y轴的交点B在(1,2)和(1,3)之间,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,与2≤c≤3矛盾,故④错误.故选B.【点睛】本题考查二次函数图象与系数的关系,结合图像,数形结合的思想的运用是本题的解题关键..二、填空题(每题4分,共24分)13、(0,2),(﹣1,0),(﹣,1).【分析】先求出点C的坐标,分为三种情况:圆P与边AO相切时,当圆P与边AB相切时,当圆P与边BO相切时,求出对应的P点即可.【详解】∵点A、B的坐标分别是(0,2)、(4,0),∴直线AB的解析式为y=-x+2,∵点P是直线y=2x+2上的一动点,∴两直线互相垂直,即PA⊥AB,且C(-1,0),当圆P与边AB相切时,PA=PO,∴PA=PC,即P为AC的中点,∴P(-,1);当圆P与边AO相切时,PO⊥AO,即P点在x轴上,∴P点与C重合,坐标为(-1,0);当圆P与边BO相切时,PO⊥BO,即P点在y轴上,∴P点与A重合,坐标为(0,2);故符合条件的P点坐标为(0,2),(-1,0),(-,1),故答案为(0,2),(-1,0),(-,1).【点睛】本题主要考查待定系数法确定一次函数关系式,一次函数的应用,及直角三角形的性质,直线与圆的位置关系,可分类3种情况圆与△AOB的三边分别相切,根据直线与圆的位置关系可求解点的坐标.14、﹣1.【解析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,,函数解析式为y=﹣3x2+1x=2时y=﹣11,故答案为﹣1.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.15、【分析】根据题意分别求出A,B,D三点的坐标,利用待定系数法求出抛物线的表达式,从而找到顶点,即可找到OE的高度.【详解】根据题意有∴设抛物线的表达式为将A,B,D代入得解得∴当时,故答案为:.【点睛】本题主要考查二次函数的最大值,掌握待定系数法是解题的关键.16、.【分析】根据概率的性质和概率公式即可求出,当他掷第10次时,正面向上的概率.【详解】解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第10次掷这枚硬币时,正面向上的概率是:.故答案为:.【点睛】本题考查了概率统计的问题,根据概率公式求解即可.17、3【分析】如图,连接OD、OE、OF,由切线的性质和切线长定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的长.【详解】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3【点睛】本题考查了三角形的内切圆与内心,切线的性质,切线长定理,勾股定理,正方形的判定和性质,熟悉切线长定理是本题的关键.18、【分析】根据二次函数的图象在轴的下方得出,,解分式方程得,注意,根据分式方程有负整数解求出a,最后结合a的取值范围进行求解.【详解】∵二次函数的图象在轴的下方,∴,,解得,,,解得,,∵分式方程有负整数解,∴,即,∵,∴,∴所有满足条件的整数的和为,故答案为:.【点睛】本题考查二次函数的图象,解分式方程,分式方程的整数解,二次函数的图象在x轴下方,则开口向下且函数的最大值小于1,解分式方程时注意分母不为1.三、解答题(共78分)19、(1);(2)【分析】(1)先求出A和B的坐标,进而求出,即可得出答案;(2)根据题意可得△AOB∽△AEC,得出,设出点C的坐标,列出方程,即可得出答案.【详解】解:(1)一次函数(为常数,)的图象分别与轴、轴交于、两点,令,则;令,则求得,∴,,∴,,在,,∵轴于点,∴轴,∴,∴;(2)根据题意得:,∴.设点的坐标为,则,,∴,解得:,或(舍去).【点睛】本题考查的是反比例函数的综合,综合性较强,注意面积比等于相似比的平方.20、(1)60,10;(2)96°;(3)【分析】(1)根据基本了解的人数和所占的百分比可求出总人数,m=总人数-非常了解的人数-基本了解的人数-了解很少的人数;(2)先求出“了解很少”所占总人数的百分比,再乘以360°即可;(3)采用列表法或树状图找到所有的情况,再从中找出所求的1名男生和1名女生的情况,再由概率等于所求情况数与总情况数之比来求解.【详解】(1)(2)“了解很少”所占总人数的百分比为所以所对的圆心角的度数为(3)由表格可知,共有12种结果,其中1名男生和1名女生的有8种可能,所以恰好抽到1名男生1名女生的概率为【点睛】本题主要考查了条形统计图,扇形统计图,根据图中信息解题,以及用列表法或树状图求概率,解题的关键是根据题意画出树状图或表格,再由概率等于所求情况与总情况之比求解,注意列表时要做到不重不漏.21、(1)①E;②;(2).【分析】(1)①分别计算出C、D、E到A、B的距离,根据“限距点”的含义即可判定;②画出图形,由“限距点”的定义可知,当点P位于直线上x轴上方并且AP时,点P是线段AB的“限距点”,据此可解;(2)画出图形,可知当时,直线上存在线段AB的“限距点”,据此可解.【详解】(1)①计算可知AC=BC=,DA=,DB=,EA=EB=2,设点为线段上任意一点,则,,,∴,∴点E为线段AB的“限距点”.故答案是:E.②如图,作PF⊥x轴于F,由“限距点”的定义可知,当点P位于直线上x轴上方并且AP时,点P是线段AB的“限距点”,∵直线与x轴交于点A(-1,0),交y轴于点H(0,),∴∠OAH=30°,∴当AP=2时,AF=,∴此时点P的横坐标为-1,∴点P横坐标的取值范围是;(2)如图,直线与x轴交于M,AB交x轴于G,∵点A(t,1)、B(t,-1),直线与x轴的交点M(-1,0),与y轴的交点C(0,),∴,∴∠NMO=30°,①当圆B与直线相切于点N,连接BN,连接BA并延长与直线交于D(t,)点,∵∠NBD=∠NMO=30°,∴,即,解得:;②当圆A与直线相切时,同理可知:∴.【点睛】本题考查了一次函数、圆的性质、两点间的距离公式,是综合性较强的题目,通过做此题培养了学生的阅读能力、数形结合的能力,此题是一道非常好、比较典型的题目.22、(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2);;.(3)①当点C′在线段BC上时,S=t2;②当点C′在CB的延长线上,S=−t2+t−;③当点E在x轴负半轴,S=t2−4t+1.【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【详解】(1)令x=0,则y=2,即点B坐标为(0,2),∴OB=2.当t=时,B和C′点重合,如图1所示,此时S=×CE•OB=,∴CE=,∴BE=.∵OB=2,∴OE=,∴OC=OE+EC=+=4,BC=,CD=,÷=1(单位长度/秒),∴点D的运动速度为1单位长度/秒,点C坐标为(4,0).故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t=k时,点D与点B重合,此时k==2;当t=m时,点E和点O重合,如图2所示.sin∠C===,cos∠C=,OD=OC•sin∠C=4×=,CD=OC•cos∠C=4×=.∴m==,n=BD•OD=×(2−)×=.故答案为:;;2.(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①当点C′在线段BC上时,如图3所示.此时CD=t,CC′=2t,0<CC′≤BC,∴0<t≤.∵tan∠C=,∴DE=CD•tan∠C=t,此时S=CD•DE=t2;②当点C′在CB的延长线上,点E在线段OC上时,如图4所示.此时CD=t,BC′=2t−2,DE=CD•tan∠C=t,CE==t,OE=OC−CE=4−t,∵,即,解得:<t≤.由(1)可知tan∠OEF==,∴OF=OE•tan∠OEF=t,BF=OB−OF=,∴FM=BF•cos∠C=.此时S=CD•DE−BC′•FM=−;③当点E在x轴负半轴,点D在线段BC上时,如图5所示.此时CD=t,BD=BC−CD=2−t,CE=t,DF=,∵,即,∴<t≤2.此时S=BD•DF=×2×(2−t)2=t2−4t+1.综上,当点C′在线段BC上时,S=t2;当点C′在CB的延长线上,S=−t2+t−;当点E在x轴负半轴,S=t2−4t+1.【点睛】本题考查了勾股定理、解直角三角形以及三角形的面积公式,解题的关键是:(1)求出BC、OC的长度;(2)根据图象能够了解当t=m和t=k时,点DE的位置;(3)分三种情况求出S关于t的函数关系式.本题属于中档题,(1)(2)难度不大;(3)需要画出图形,利用数形结合,通过解直角三角形以及三角形的面积公式找出S关于t的函数解析式.23、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北美术学院《数字化室内建筑制图AutoCAD》2022-2023学年第一学期期末试卷
- 基于人工智能的视频监控系统合同(2024年)
- 河北地质大学华信学院《中国法律史》2021-2022学年第一学期期末试卷
- 雨季施工方案以及措施
- 消防工程安全文明施工目标及保证措施
- 图书馆阅读区绿植布置方案
- 设计进度计划和保证设计进度的措施
- 旅游业卫生防疫制度防控策略
- 新兴职业的培训需求及市场发展研究报告
- 吸入器产品入市调查研究报告
- 全过程造价咨询服务 投标方案(技术方案)
- 四年级上册道德与法治7《健康看电视》教学反思三篇
- 3-1实验室废弃物的处理
- 七年级音乐下册 第5单元《康定情歌》课件3 花城版
- 水沟盖板施工方案
- 《思想道德与法治》第五章
- 肾内科运用PDCA循环降低透析器凝血发生率品管圈活动
- 国有企业员工违纪违规行为处分规定四篇
- 一年级数学(人教版)-分类与整理(一)-3学习任务单
- 新西师版小学数学二年级上册全册单元测试卷(含期中期末试卷)
- 《破茧》读书笔记PPT模板思维导图下载
评论
0/150
提交评论