版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把抛物线向下平移1个单位再向右平移一个单位所得到的的函数抛物线的解析式是()A. B. C. D.2.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠OBC的度数为()A.18° B.36° C.60° D.54°3.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是()A.<2 B.<3 C.<2且≠0 D.<3且≠24.下列式子中最简二次根式是()A. B. C. D.5.关于抛物线y=x2﹣6x+9,下列说法错误的是()A.开口向上 B.顶点在x轴上C.对称轴是x=3 D.x>3时,y随x增大而减小6.如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是()A. B. C. D.7.小敏打算在某外卖网站点如下表所示的菜品和米饭.已知每份订单的配送费为3元,商家为促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元.如果小敏在购买下表的所有菜品和米饭时,采取适当的下单方式,那么他的总费用最低可为()菜品单价(含包装费)数量水煮牛肉(小)30元1醋溜土豆丝(小)12元1豉汁排骨(小)30元1手撕包菜(小)12元1米饭3元2A.48元 B.51元 C.54元 D.59元8.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5 B.7.5 C.9.5 D.89.△ABC的外接圆圆心是该三角形()的交点.A.三条边垂直平分线 B.三条中线C.三条角平分线 D.三条高10.如图所示,给出下列条件:①;②;③;④,其中单独能够判定的个数为()A. B. C. D.二、填空题(每小题3分,共24分)11.___________12.点关于轴的对称点的坐标是__________.13.抛物线向左平移2个单位,再向上平移1个单位,得到的抛物线是______.14.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯长为,坡角为;改造后的斜坡式自动扶梯的坡角为,则改造后的斜坡式自动扶梯的长度约为________.(结果精确到,温馨提示:,,)15.如图,的顶点都在方格纸的格点上,则_______.16.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当取四个不同数值时此二次函数的图象.发现它们的顶点在同一条直线上,那么这条直线的表达式是_________.17.抛物线y=x2+2x﹣3的对称轴是_____.18.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,AB=6cm,BC=8cm.点P从点B出发沿边BC向点C以2cm/s的速度移动,点Q从C点出发沿CD边向点B以1cm/s的速度移动.如果P、Q同时出发,几秒钟后,可使△PCQ的面积为五边形ABPQD面积的?20.(6分)某校网络学习平台开通以后,王老师在平台上创建了教育工作室和同学们交流学习.随机抽查了20天通过访问王老师工作室学习的学生人数记录,统计如下:(单位:人次)2020281520253020121330251520101020172426“希望腾飞”学习小组根据以上数据绘制出频数分布表和频数分布直方图的一部分如图:频数分布表分组频数(单位:天)10≤x<15415≤x<20320≤x<25a25≤x<30b30≤x<352合计20请根据以上信息回答下列问题:(1)在频数分布表中,a的值为,b的值为,并将频数分布直方图补充完整;(2)求这20天访问王老师工作室的访问人次的平均数.21.(6分)已知:如图,在半径为的中,、是两条直径,为的中点,的延长线交于点,且,连接。.(1)求证:;(2)求的长.22.(8分)请阅读下面材料:问题:已知方程x1+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的一半.解:设所求方程的根为y,y=,所以x=1y把x=1y代入已知方程,得(1y)1+1y-3=0化简,得4y1+1y-3=0故所求方程为4y1+1y-3=0这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”解决下列问题:(1)已知方程1x1-x-15=0,求一个关于y的一元二次方程,使它的根是已知方程根的相反数,则所求方程为:_________.(1)已知方程ax1+bx+c=0(a≠0)有两个不相等的实数根,求一个关于y的一元二次方程,使它的根比已知方程根的相反数的一半多1.23.(8分)如图,已知抛物线经过,及原点,顶点为.(1)求抛物线的函数解析式;(2)设点在抛物线上,点在抛物线的对称轴上,且以、、,为顶点,为边的四边形是平行四边形,求点的坐标;(3)是抛物线上第一象限内的动点,过点作轴,垂足为.是否存在这样的点,使得以,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.24.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围.25.(10分)某区规定学生每天户外体育活动时间不少于1小时,为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如图的统计图表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=_____,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.组别时间(小时)频数(人数)频率A0≤t<0.5200.05B0.5≤t<1a0.3Cl≤t<1.51400.35D1.5≤t<2800.2E2≤t<2.5400.126.(10分)如图,在平行四边形中,(1)求与的周长之比;(2)若求.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:抛物线向下平移1个单位,得:,再向右平移1个单位,得:,即:,故选B.【点睛】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.2、D【解析】根据圆周角定理,由∠A=36°,可得∠O=2∠A=72°,然后根据OB=OC,求得∠OBC=12(180°-∠O)=1故选:D点睛:此题主要考查了圆周角定理,解题时,根据同弧所对的圆周角等于圆心角的一半,求出圆心角,再根据等腰三角形的性质和三角形的内角和定理求解即可,解题关键是发现同弧所对的圆心角和圆周角,明确关系进行计算.3、D【分析】根据方程有两个不相等的实数根结合二次项系数非0,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【详解】∵关于x的一元二次方程(k−2)x2−2x+1=0有两个不相等的实数根,∴,解得:k<3且k≠2.故选D.【点睛】本题考查根的判别式,解题突破口是得出关于k的一元一次不等式组.4、A【解析】根据最简二次根式的定义:被开方数是整数或整式,且不含开得尽方的因数或因式进行判断即可.【详解】A.是最简二次根式,符合题意;B.,不是最简二次根式,不符合题意;C.被开方数是分数,不是最简二次根式,不符合题意;D.被开方数是分数,不是最简二次根式,不符合题意;故选A.【点睛】本题考查最简二次根式,熟练掌握最简二次根式的定义是解题的关键.5、D【分析】直接利用二次函数的性质进而分别分析得出答案.【详解】解:,
则a=1>0,开口向上,顶点坐标为:(3,0),对称轴是x=3,故选项A,B,C都正确,不合题意;
x>3时,y随x增大而增大,故选项D错误,符合题意.
故选:D.【点睛】此题主要考查了二次函数的性质,正确掌握相关性质是解题关键.6、C【分析】结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.【详解】①当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,∴,②当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,,,,③当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,综上所述:与的函数表达式为:.故答案为C.【点睛】本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.7、C【分析】根据满30元减12元,满60元减30元,满100元减45元,即可得到结论.【详解】小宇应采取的订单方式是60一份,30一份,所以点餐总费用最低可为60−30+3+30−12+3=54元,答:他点餐总费用最低可为54元.故选C.【点睛】本题考查了有理数的加减混合运算,正确的理解题意是解题的关键.8、A【解析】根据垂径定理得到直角三角形,求出的长,连接,得到直角三角形,然后在直角三角形中计算出半径的长.【详解】解:如图所示:连接,则长为半径.∵于点,∴,∵在中,,∴,∴,故答案为A.【点睛】本题主要考查垂径定理和勾股定理.根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的弧”得到一直角边,利用勾股定理列出关于半径的等量关系是解题关键.9、A【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.10、B【解析】由已知△ABC与△ABD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】解::①∵,∠A为公共角,∴;②∵,∠A为公共角,∴;③虽然,但∠A不是已知的比例线段的夹角,所以两个三角形不相似;④∵,∴,又∵∠A为公共角,∴.综上,单独能够判定的个数有3个,故选B.【点睛】本题考查了相似三角形的判定,属于基础题目,熟练掌握相似三角形的判定方法是解题的关键.二、填空题(每小题3分,共24分)11、【分析】代入特殊角度的三角函数值计算即可.【详解】故答案为:.【点睛】本题考查了特殊角度的三角函数值计算,熟记特殊角度的三角函数值是关键.12、【分析】根据对称点的特征即可得出答案.【详解】点关于轴的对称点的坐标是,故答案为.【点睛】本题考查的是点的对称,比较简单,需要熟练掌握相关基础知识.13、【分析】先得到抛物线的顶点坐标为(0,0),根据平移规律得到平移后抛物线的顶点坐标,则利用顶点式可得到平移后的抛物线的解析式为.【详解】抛物线的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移1个单位得到的点的坐标为(,1),
所以平移后的抛物线的解析式为.
故答案为:.【点睛】本题考查了二次函数图象的平移:由于抛物线平移后的形状不变,故a不变,再考虑平移后的顶点坐标,即可求出解析式.14、19.1【分析】先在Rt△ABD中,用三角函数求出AD,最后在Rt△ACD中用三角函数即可得出结论.【详解】解:在Rt△ABD中,∠ABD=30°,AB=10m,∴AD=ABsin∠ABD=10×sin30°=5(m),在Rt△ACD中,∠ACD=15°,sin∠ACD=,∴AC=≈≈19.1(m),即:改造后的斜坡式自动扶梯AC的长度约为19.1m.故答案为:19.1.【点睛】此题主要考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.15、【分析】如下图,先构造出直角三角形,然后根据sinA的定义求解即可.【详解】如下图,过点C作AB的垂线,交AB延长线于点D设网格中每一小格的长度为1则CD=1,AD=3∴在Rt△ACD中,AC=∴sinA=故答案为:.【点睛】本题考查锐角三角函数的求解,解题关键是构造出直角三角形ACD.16、【分析】已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去a得出x、y的关系式.【详解】解:二次函数中,顶点坐标为:,设顶点坐标为(x,y),∴①,②,由①2+②,得,∴;故答案为:.【点睛】本题考查了二次函数的性质,根据顶点式求顶点坐标的方法是解题的关键,注意运用消元的思想解题.17、x=﹣1【分析】直接利用二次函数对称轴公式求出答案.【详解】抛物线y=x2+2x﹣3的对称轴是:直线x=﹣=﹣=﹣1.故答案为:直线x=﹣1.【点睛】此题主要考查了二次函数的性质,正确记忆二次函数对称轴公式是解题关键.18、2-2【解析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【详解】如图:取点D关于直线AB的对称点D′,以BC中点O为圆心,OB为半径画半圆,连接OD′交AB于点P,交半圆O于点G,连BG,连CG并延长交AB于点E,由以上作图可知,BG⊥EC于G,PD+PG=PD′+PG=D′G,由两点之间线段最短可知,此时PD+PG最小,∵D′C’=4,OC′=6,∴D′O=,∴D′G=-2,∴PD+PG的最小值为-2,故答案为-2.【点睛】本题考查了轴对称的性质、直径所对的圆周角是直角、线段和的最小值问题等,综合性较强,能灵活利用相关知识正确添加辅助线是解题的关键.通常解此类问题都是将线段之和转化为固定两点之间的线段和最短.三、解答题(共66分)19、2秒【分析】用时间t分别表示PC、CQ,求出△PCQ的面积,再由△PCQ的面积为五边形ABPQD面积的得到△PCQ的面积是矩形的即可解题【详解】设时间为t秒,则PC=8-2t,AC=t∴∵△PCQ的面积为五边形ABPQD面积的∴∴解得t=2【点睛】本题考查一元二次方程的应用,本题的关键是把三角形与五边形的面积转换成与矩形的面积。20、(1)7、1,直方图见解析;(2)20人次.【分析】(1)根据题目所给数据即可得出a、b的值,从而补全直方图;
(2)根据平均数的概念列式求解可得.【详解】解:(1)由题意知20≤x<25的天数a=7,25≤x<30的天数b=1,补全直方图如下:故答案为:7、1.(2)这20天访问王老师工作室的访问人次的平均数为:答:这20天访问王老师工作室的访问人次的平均数为20人次.【点睛】此题考查了频数(率)分布直方图,平均数,正确识别统计图及统计表中的数据是解本题的关键.21、(1)证明见解析;(1)EM=4.【解析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(1)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度.【详解】(1)连接AC、EB.∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(1)∵DC是⊙O的直径,∴∠DEC=90°,∴DE1+EC1=DC1.∵DE,CD=8,且EC为正数,∴EC=2.∵M为OB的中点,∴BM=1,AM=3.∵AM•BM=EM•CM=EM•(EC﹣EM)=EM•(2﹣EM)=11,且EM>MC,∴EM=4.【点睛】本题考查了相似三角形的判定和性质、圆周角定理、勾股定理的知识点,解答本题的关键是根据已知条件和图形作辅助线.22、(1)1y1+y-15=0;(1).【分析】(1)利用题中解法,设所求方程的根为y,则y=-x,所以x=-y,然后把x=-y代入已知方程整理后即可得到结果;(1)设所求方程的根为y,则y=(x≠0),于是x=4-1y(y≠0),代入方程ax1+bx+c=0整理即可得.【详解】解:(1)设所求方程的根为y,则y=-x,所以x=-y,把x=-y代入1x1-x-15=0,整理得,1y1+y-15=0,故答案为:1y1+y-15=0;(1)设所求方程的根为y,则y=(x≠0),所以,x=4-1y(y≠0),把x=4-1y代入方程ax1+bx+c=0,整理得:.【点睛】本题主要考查一元二次方程的解,解题的关键是理解方程的解的定义和解题的方法.23、(1);(2)点的坐标为:(1,3);(3)存在.符合条件的点有两个,分别是或(3,15).【分析】(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式;
(2)根据平行四边形的性质,对边平行且相等,可以求出点D的坐标;
(3)分两种情况讨论,①△AMP∽△BOC,②PMA∽△BOC,根据相似三角形对应边的比相等可以求出点P的坐标.【详解】解:(1)设抛物线的解析式为,将点,,代入,可得:,解得:.故函数解析式为:;(2)当AO为平行四边形的边时,DE∥AO,DE=AO,由A(-2,0)知:DE=AO=2,
由四边形AODE可知D在对称轴直线x=-1右侧,
则D横坐标为1,代入抛物线解析式得D(1,3).
综上可得点D的坐标为:(1,3);(3)存在.理由如下:如图:,,根据勾股定理得:,,,,是直角三角形,,假设存在点,使以,,为顶点的三角形与相似,设,由题意知,,且,①若,则,即,得:,(舍去).当时,,即,②若,则,即:,得:,(舍去),当时,,即.故符合条件的点有两个,分别是或(3,15).【点睛】本题考查的是二次函数的综合题,首先用待定系数法求出抛物线的解析式,然后利用平行四边形的性质和相似三角形的性质确定点D和点P的坐标,注意分类讨论思想的运用,难度较大.24、(1)x1=1,x2=3;(2)1<x<3;(3)x>2.【分析】(1)利用抛物线与x轴的交点坐标写出方程ax2+bx+c=0的两个根;(2)写出函数图象在x轴上方时所对应的自变量的范围即可;(3)根据函数图象可得答案.【详解】解:(1)由函数图象可得:方程ax2+bx+c=0的两个根为x1=1,x2=3;(2)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保局代表演讲稿5篇
- 给生病学生捐款的倡议书
- 图书漂流活动方案15篇
- 德智体美劳自我总结(5篇)
- 21.1 二次根式 同步练习
- 浙江省浙里特色联盟期中联考2024-2025学年高一上学期11月期中英语试题(无答案)
- 贵州省黔西南布依族苗族自治州兴义市顶效开发区顶兴学校2024-2025学年高三上学期期中考试生物试题(含答案)
- 浙江地区高考语文五年高考真题汇编语言文字应用
- 房地产租赁中介合同
- 2024年工地门窗安装合同
- 机械设计基础后习题答案完整版
- 糖尿病患者教育-饮食篇
- 痛风药物治疗及进展PPT课件
- 运动解剖学实验报告书模板
- 笔筒制作教案
- 重力坝开题报告
- 建筑工程--XZ公司16年内部资料:安装公司施工工艺标准合集参考范本
- 校园及周边高危人员排查情况表(共2页)
- 化学除磷加药量及污泥量计算书
- 有关消防复查的申请书
- 苏州市存量房买卖合同
评论
0/150
提交评论