版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C. D.2.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=()A.30° B.40° C.50° D.60°3.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数为()A.140° B.135° C.130° D.125°4.抛物线的部分图象如图所示,当时,x的取值范围是()A.x>2或x<-3 B.-3<x<2C.x>2或x<-4 D.-4<x<25.已知函数是的图像过点,则的值为()A.-2 B.3 C.-6 D.66.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7.,是的两条切线,,为切点,直线交于,两点,交于点,为的直径,下列结论中不正确的是()A. B. C. D.8.方程x2=2x的解是()A.2 B.0 C.2或0 D.﹣2或09.小红抛掷一枚质地均匀的骰子,骰子六个面分别刻有1到6的点数,下列事件为必然事件的是()A.骰子向上一面的点数为偶数 B.骰子向上一面的点数为3C.骰子向上一面的点数小于7 D.骰子向上一面的点数为610.如图,AC是电杆AB的一根拉线,现测得BC=6米,∠ABC=90°,∠ACB=52°,则拉线AC的长为(
)米.A.
B.
C.
D.二、填空题(每小题3分,共24分)11.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.12.已知是关于的一元二次方程的两个实数根,则=____.13.抛物线的顶点坐标是__________.14.如图,某舰艇上午9时在A处测得灯塔C在其南偏东75°方向上,且该舰艇以每小时10海里的速度沿南偏东15°方向航行,11小时到达B处,在B处测得灯塔C在北偏东75°方向上,则B处到灯塔C的距离为________海里.15.抛物线y=x2-2x+3,当-2≤x≤3时,y的取值范围是__________16.设a,b是一个直角三角形两条直角边的长,且,则这个直角三角形的斜边长为________.17.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.18.在中,.点在直线上,,点为边的中点,连接,射线交于点,则的值为__________.三、解答题(共66分)19.(10分)解下列方程:配方法.20.(6分)已知关于x的方程x2+(2m+1)x+m(m+1)=1.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=1,求代数式m2+m﹣5的值.21.(6分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?22.(8分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.23.(8分)如图:在平面直角坐标系中,直线:与轴交于点,经过点的抛物线的对称轴是.(1)求抛物线的解析式.(2)平移直线经过原点,得到直线,点是直线上任意一点,轴于点,轴于点,若点在线段上,点在线段的延长线上,连接,,且.求证:.(3)若(2)中的点坐标为,点是轴上的点,点是轴上的点,当时,抛物线上是否存在点,使四边形是矩形?若存在,请求出点的坐标,如果不存在,请说明理由.24.(8分)(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.25.(10分)如图,在等边△ABC中,AB=6,AD是高.(1)尺规作图:作△ABC的外接圆⊙O(保留作图痕迹,不写作法)(2)在(1)所作的图中,求线段AD,BD与弧所围成的封闭图形的面积.26.(10分)根据广州市垃圾分类标准,将垃圾分为“厨余垃圾、可回收垃圾、有害垃圾、其它垃圾”四类.小明将分好类的两袋垃圾准确地投递到小区的分类垃圾桶里.请用列举法求小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率.
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据三角函数定义可得AD=AC•sin45°,从而可得AD的长,再利用正切定义可得BD的长.【详解】∵AC=6,∠C=45°∴AD=AC⋅sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故选A.【点睛】本题主要考查解直角三角形,三角函数的知识,熟记知识点是解题的关键.2、C【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半求得∠BOC,再根据三角形的内角和定理以及等腰三角形的两个底角相等进行计算.【详解】解:根据圆周角定理,得∠BOC=2∠A=80°∵OB=OC∴∠OBC=∠OCB==50°,故选:C.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,掌握圆周角定理是解题的关键.3、C【分析】根据圆周角定理可知,再由三角形的内角和可得,最后根据圆内接四边形的性质即可得.【详解】AB是半圆O的直径(圆周角定理)(圆内接四边形的对角互补)故选:C.【点睛】本题考查了圆周角定理、三角形的内角和定理、圆内接四边形的性质,掌握灵活运用各定理和性质是解题关键.4、C【分析】先根据对称轴和抛物线与x轴的交点求出另一交点;再根据开口方向,结合图形,求出y<0时,x的取值范围.【详解】解:因为抛物线过点(2,0),对称轴是x=-1,
根据抛物线的对称性可知,抛物线必过另一点(-1,0),
因为抛物线开口向下,y<0时,图象在x轴的下方,
此时,x>2或x<-1.
故选:C.【点睛】本题考查了抛物线与x轴的交点,解题的关键是利用二次函数的对称性,判断图象与x轴的交点,根据开口方向,形数结合,得出结论.5、C【解析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数的图象经过点(-2,3),∴k=-2×3=-1.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6、B【解析】试题分析:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B选项正确.C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误.考点:1.中心对称图形;2.轴对称图形.7、B【解析】根据切线的性质和切线长定理得到PA=PB,∠APE=∠BPE,,易证△PAE≌△PBE,得到E为AB中点,根据垂径定理得;通过互余的角的运算可得.【详解】解:∵,是的两条切线,∴,∠APE=∠BPE,故A选项正确,在△PAE和△PBE中,,∴△PAE≌△PBE(SAS),∴AE=BE,即E为AB的中点,∴,即,故C选项正确,∴∵为切点,∴,则,∴∠PAE=∠AOP,又∵,∴∠PAE=∠ABP,∴,故D选项正确,故选B.【点睛】本题主要考查了切线长定理、全等三角形的判定和性质、垂径定理的推论及互余的角的运算,熟练掌握这些知识点的运用是解题的关键.8、C【分析】利用因式分解法求解可得.【详解】解:∵x2=2x,∴x2﹣2x=0,则x(x﹣2)=0,∴x=0或x﹣2=0,解得:x1=0,x2=2,故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9、C【分析】必然事件就是一定发生的事件,依据定义即可判断.【详解】A、骰子向上一面的点数为偶数是随机事件,选项错误;B、骰子向上一面的点数为3是随机事件,选项错误;C、骰子向上一面的点数小于7是必然事件,选项正确;D、骰子向上一面的点数为6是随机事件,选项错误.故选:C.【点睛】本题考查了随机事件与必然事件,熟练掌握必然事件的定义是解题的关键.10、C【分析】根据余弦定义:即可解答.【详解】解:,,米,米;故选C.【点睛】此题考查了解直角三角形的应用,将其转化为解直角三角形的问题是本题的关键,用到的知识点是余弦的定义.二、填空题(每小题3分,共24分)11、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.【点睛】此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12、-3【分析】欲求的值,根据一元二次方程根与系数的关系,求得两根的和与积,代入数值计算即可.【详解】解:根据题意x1+x2=2,x1•x2=-4,===-3.故答案为:-3.【点睛】本题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是经常使用的一种解题方法.13、(-1,-3)【分析】根据抛物线顶点式得顶点为可得答案.【详解】解:∵抛物线顶点式得顶点为,∴抛物线的顶点坐标是(-1,-3)故答案为(-1,-3).【点睛】本题考查了二次函数的顶点式的顶点坐标,熟记二次函数的顶点式及坐标是解题的关键.14、20【分析】根据题意得出,,据此即可求解.【详解】根据题意:(海里),如图,根据题意:,,∴,,∴,∴,答:B处到灯塔C的距离为海里.故答案为:.【点睛】本题考查了解直角三角形的应用-方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.15、【分析】先把一般式化为顶点式,根据二次函数的最值,以及对称性,即可求出y的最大值和最小值,即可得到取值范围.【详解】解:∵,又∵,∴当时,抛物线有最小值y=2;∵抛物线的对称轴为:,∴当时,抛物线取到最大值,最大值为:;∴y的取值范围是:;故答案为:.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16、【分析】此题实际上求的值.设t=a2+b2,将原方程转化为关于t的一元二次方程t(t+1)=12,通过解方程求得t的值即可.【详解】设t=a2+b2,则由原方程,得t(t+1)=12,整理,得(t+4)(t-3)=0,解得t=3或t=-4(舍去).则a2+b2=3,∵a,b是一个直角三角形两条直角边的长,∴这个直角三角形的斜边长为.故答案是:.【点睛】此题考查了换元法解一元二次方程,以及勾股定理,熟练运用勾股定理是解本题的关键.17、611【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=,∵当n=63时,前63行共有=2016个数字,2020﹣2016=1,∴2020在第61行左起第1个数,故答案为:61,1.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.18、或【分析】分当点D在线段BC上时和当点D在线段CB的延长线上时两种情况讨论,根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:当点D在线段BC上时,如图,
过点D作DF//CE,∵,
∴,即EB=4BF,
∵点为边的中点,
∴AE=EB,∴,
当点D在线段CB的延长线上时,如图,
过点D作DF//CE,∵,
∴,即MF=2DF,
∵点为边的中点,
∴AE=EB,∴AM=MF=2DF∴,故答案为或.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.三、解答题(共66分)19、;或.
【解析】试题分析:(1)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半的平方,把方程左边写完全平方的形式,然后用直接开平方法求解;(2)把方程右边的项移到左边,然后用因式分解法求解.试题解析:,,即,则,;,,则或,解得:或.20、(1)方程总有两个不相等的实数根;(2)-2.【分析】(1)根据一元二次方程的根的判别式即可得出△=1>1,由此即可证出方程总有两个不相等的实数根;
(2)将x=1代入原方程求出m的值,再将m值代入代数式中求值即可.【详解】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m(m+1)=1.∴△=(2m+1)2﹣4m(m+1)=1>1,∴方程总有两个不相等的实数根;(2)∵x=1是此方程的一个根,∴把x=1代入方程中得到m(m+1)=1,把m(m+1)=1代入得m2+m﹣2=-2.【点睛】本题考查了根的判别式及用整体代入法求代数式的值,熟练掌握“当一元二次方程根的判别式△>1时,方程有两个不相等的实数根.”是解题的关键.21、(1)y与x的函数关系式为y=-x+150;(2)该批发商若想获得4000元的利润,应将售价定为70元;(3)该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为1元.【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式;(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值.【详解】(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得,故y与x的函数关系式为y=-x+150;(2)根据题意得(-x+150)(x-20)=4000,解得x1=70,x2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w与x的函数关系式为:w=(-x+150)(x-20)=-x2+170x-3000=-(x-85)2+1,∵-1<0,∴当x=85时,w值最大,w最大值是1.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为1元.22、(1)P(抽到数字2)=;(2)游戏不公平,图表见解析.【详解】试题分析:(1)根据概率公式即可求解;(2)利用列表法,求得小贝胜与小晶胜的概率,比较即可游戏是否公平.试题解析:(1)P(抽到数字2)=;(2)公平.列表:
2
2
3
6
2
(2,2)
(2,2)
(2,3)
(2,6)
2
(2,2)
(2,2)
(2,3)
(2,6)
3
(3,2)
(3,2)
(3,3)
(3,6)
6
(6,2)
(6,2)
(6,3)
(6,6)
由上表可以看出,可能出现的结果共有16种,它们出现的可能性相同,所有的结果中,满足两位数不超过32的结果有10种.所以P(小贝胜)=,P(小晶胜)=.所以游戏不公平.考点:游戏公平性.23、(1);(2)证明见解析;(3)存在,点的坐标为或.【分析】(1)先求得点A的坐标,然后依据抛物线过点A,对称轴是,列出关于a、c的方程组求解即可;
(2)设P(3n,n),则PC=3n,PB=n,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可;
(3)设,然后用含t的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,,从而可求得点Q的坐标(用含t的式子表示),最后,将点Q的坐标代入抛物线的解析式求得t的值即可.【详解】解:(1)当时,,解得,即,抛物线过点,对称轴是,得,解得,抛物线的解析式为;(2)∵平移直线经过原点,得到直线,∴直线的解析式为.∵点是直线上任意一点,∴,则,.又∵,∴.∵轴,轴∴∴∵,∴,∴.(3)设,点在点的左侧时,如图所示,则.∵,∴.∴.∵四边形为矩形,∴,,∴,,∴,.将点的坐标代入抛物线的解析式得:,解得:或(舍去).∴.当点在点的右侧时,如下图所示,则.∵,∴.∴.∵四边形为矩形,∴,,∴,,∴,.将点的坐标代入抛物线的解析式得:,解得:或(舍去).∴.综上所述,点的坐标为或.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含t的式子表示点Q的坐标是解题的关键.24、(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB=CD+BA;证明见解析;(实践应用)1或.【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(变式探究)证明△MAB≌△MGB(SAS),则MA=MG,MC=MG,又DM⊥BC,则DC=DG,即可求解;(实践应用)已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=(6+2)=1.如图∠D2AC=45°,同理易得AD2=.【详解】(问题呈现)①相等的弧所对的弦相等②同弧所对的圆周角相等③有两组边及其夹角分别对应相等的两个三角形全等故答案为:相等的弧所对的弦相等;同弧所定义的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)CD=D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 写字楼前台绿化租赁协议
- 建筑施工用电安全合同
- IT企业会计岗位合同
- 游乐园钢结构安装施工合同
- 押运员安全意识教育
- 商业大厦改造施工合同
- 广州医疗机构租房合同
- 大连市茶楼租赁合同
- 剧院空调系统工程合同
- 保健品公司财务主管招聘合同
- 江苏省苏州市市区2023-2024学年五年级上学期期中数学试卷
- 2024-2025学年度北师大版八年级上册物理期中模拟测试卷
- 2024年国家公务员考试行测真题完整版
- (完整)痔疮手术知情同意书
- 写作与沟通智慧树知到课后章节答案2023年下杭州师范大学
- 汉语拼音过关分类检测(直接打印)
- 立体停车库详解
- 道路借用协议书
- 小学“爱心厨房”项目报告
- 单元式幕墙施工方法(完整版)
- 职业学校校风校训教风学风
评论
0/150
提交评论