2023届河南省商丘名校高三第五次模拟考试数学试卷含解析_第1页
2023届河南省商丘名校高三第五次模拟考试数学试卷含解析_第2页
2023届河南省商丘名校高三第五次模拟考试数学试卷含解析_第3页
2023届河南省商丘名校高三第五次模拟考试数学试卷含解析_第4页
2023届河南省商丘名校高三第五次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离2.已知奇函数是上的减函数,若满足不等式组,则的最小值为()A.-4 B.-2 C.0 D.43.已知双曲线(,)的左、右焦点分别为,以(为坐标原点)为直径的圆交双曲线于两点,若直线与圆相切,则该双曲线的离心率为()A. B. C. D.4.已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为()A. B. C. D.5.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.6.在中,是的中点,,点在上且满足,则等于()A. B. C. D.7.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件8.已知命题若,则,则下列说法正确的是()A.命题是真命题B.命题的逆命题是真命题C.命题的否命题是“若,则”D.命题的逆否命题是“若,则”9.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A. B. C. D.10.设复数满足,则在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.12.若,则的虚部是A.3 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从2、3、5、7、11、13这六个质数中任取两个数,这两个数的和仍是质数的概率是________(结果用最简分数表示)14.在四面体中,分别是的中点.则下述结论:①四面体的体积为;②异面直线所成角的正弦值为;③四面体外接球的表面积为;④若用一个与直线垂直,且与四面体的每个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为.其中正确的有_____.(填写所有正确结论的编号)15.曲线f(x)=(x2+x)lnx在点(1,f(1))处的切线方程为____.16.平面向量,,(R),且与的夹角等于与的夹角,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.女生男生总计获奖不获奖总计附表及公式:其中,.18.(12分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.(1)求数列{an}的通项an;(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.19.(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.20.(12分)设函数f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集为{x|x≤1},求实数a的值;(2)证明:f(x).21.(12分)如图,三棱锥中,,,,,.(1)求证:;(2)求直线与平面所成角的正弦值.22.(10分)已知数列满足:对任意,都有.(1)若,求的值;(2)若是等比数列,求的通项公式;(3)设,,求证:若成等差数列,则也成等差数列.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r2.B【解析】

根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】奇函数是上的减函数,则,且,画出可行域和目标函数,,即,表示直线与轴截距的相反数,根据平移得到:当直线过点,即时,有最小值为.故选:.【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.3.D【解析】

连接,可得,在中,由余弦定理得,结合双曲线的定义,即得解.【详解】连接,则,,所以,在中,,,故在中,由余弦定理可得.根据双曲线的定义,得,所以双曲线的离心率故选:D【点睛】本题考查了双曲线的性质及双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.4.C【解析】

设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率.【详解】设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即.故选:C【点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.5.D【解析】

先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.6.B【解析】

由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解:∵M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足∴P是三角形ABC的重心∴又∵AM=1∴∴故选B.【点睛】判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.7.A【解析】

首先利用二倍角正切公式由,求出,再根据充分条件、必要条件的定义判断即可;【详解】解:∵,∴可解得或,∴“”是“”的充分不必要条件.故选:A【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题.8.B【解析】

解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.【详解】解不等式,解得,则命题为假命题,A选项错误;命题的逆命题是“若,则”,该命题为真命题,B选项正确;命题的否命题是“若,则”,C选项错误;命题的逆否命题是“若,则”,D选项错误.故选:B.【点睛】本题考查四种命题的关系,考查推理能力,属于基础题.9.A【解析】

结合已知可知,可求,进而可求,代入,结合,可求,即可判断.【详解】图象上相邻两个极值点,满足,即,,,且,,,,,,当时,为函数的一个极小值点,而.故选:.【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.10.C【解析】

化简得到,得到答案.【详解】,故,对应点在第三象限.故选:.【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.11.A【解析】

将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.12.B【解析】

因为,所以的虚部是.故选B.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

依据古典概型的计算公式,分别求“任取两个数”和“任取两个数,和是质数”的事件数,计算即可。【详解】“任取两个数”的事件数为,“任取两个数,和是质数”的事件有(2,3),(2,5),(2,11)共3个,所以任取两个数,这两个数的和仍是质数的概率是。【点睛】本题主要考查古典概型的概率求法。14.①③④.【解析】

补图成长方体,在长方体中利用割补法求四面体的体积,和外接球的表面积,以及异面直线的夹角,作出截面即可计算截面面积的最值.【详解】根据四面体特征,可以补图成长方体设其边长为,,解得补成长,宽,高分别为的长方体,在长方体中:①四面体的体积为,故正确②异面直线所成角的正弦值等价于边长为的矩形的对角线夹角正弦值,可得正弦值为,故错;③四面体外接球就是长方体的外接球,半径,其表面积为,故正确;④由于,故截面为平行四边形,可得,设异面直线与所成的角为,则,算得,.故正确.故答案为:①③④.【点睛】此题考查根据几何体求体积,外接球的表面积,异面直线夹角和截面面积最值,关键在于熟练掌握点线面位置关系的处理方法,补图法作为解决体积和外接球问题的常用方法,平常需要积累常见几何体的补图方法.15.【解析】

求函数的导数,利用导数的几何意义即可求出切线方程.【详解】解:∵,

∴,

则,

又,即切点坐标为(1,0),

则函数在点(1,f(1))处的切线方程为,

即,

故答案为:.【点睛】本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.16.2【解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ),;(Ⅱ)详见解析.【解析】

(Ⅰ)根据概率的性质知所有矩形的面积之和等于列式可解得;(Ⅱ)由频率分布直方图知样本中获奖的人数为,不获奖的人数为,从而可得列联表,再计算出,与临界值比较可得.【详解】解:(Ⅰ),.(Ⅱ)由频率分布直方图知样本中获奖的人数为,不获奖的人数为,列联表如下:女生男生总计获奖不获奖总计因为,所以在犯错误的概率不超过的前提下能认为“获奖与女生,男生有关.”【点睛】本题主要考查独立性检验,以及由频率分布直方图求平均数的问题,熟记独立性检验的思想,以及平均数的计算方法即可,属于常考题型.18.(1).(2)【解析】

(1)先设等差数列{an}的公差为d(d>0),然后根据等差数列的通项公式及已知条件可列出关于d的方程,解出d的值,即可得到数列{an}的通项an;(2)先根据第(1)题的结果计算出数列{bn}的通项公式,然后运用错位相减法计算前n项和Tn.【详解】(1)由题意,设等差数列{an}的公差为d(d>0),则a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an⋅3n•3n=(2n+1)•3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)•3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)•3n﹣1+(2n+1)•3n,两式相减,可得:﹣2Tn=3×1+2×31+2×32+…+2•3n﹣1﹣(2n+1)•3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)•3n=3+2(2n+1)•3n=﹣2n•3n,∴Tn=n•3n.【点睛】本题主要考查等差数列基本量的计算,以及运用错位相减法计算前n项和.考查了转化与化归思想,方程思想,错位相减法的运用,以及逻辑思维能力和数学运算能力.属于中档题.19.(1)见解析;(2)【解析】

(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.【详解】(1)证明:∵平面平面ABEG,且,∴平面,∴,由题意可得,∴,∵,且,∴平面.(2)如图所示,建立空间直角坐标系,则,,,,,,.设平面的法向量是,则,令,,由(1)可知平面的法向量是,∴,由图可知,二面角为钝二面角,所以二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.20.(1)a=1;(2)见解析【解析】

(1)由题意可得|x﹣a|≥4x,分类讨论去掉绝对值,分别求得x的范围即可求出a的值.(2)由条件利用绝对值三角不等式,基本不等式证得f(x)≥2..【详解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),当x≥a时,x﹣a≥4x,解得x,这与x≥a>0矛盾,故不成立,当x<a时,a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)证明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,当且仅当a时取等号,故f(x).【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论