版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.小明同学发现自己一本书的宽与长之比是黄金比约为0.1.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.386cm D.7.64cm2.⊙O的半径为3,点P到圆心O的距离为5,点P与⊙O的位置关系是()A.无法确定 B.点P在⊙O外 C.点P在⊙O上 D.点P在⊙O内3.如图,矩形的对角线交于点,已知,,下列结论错误的是()A. B. C. D.4.如图,二次函数的图象经过点,下列说法正确的是()A. B. C. D.图象的对称轴是直线5.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3) B.(0,2.5) C.(0,2) D.(0,1.5)6.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%7.抛物线的顶点坐标是()A.(2,9) B.(2,-9)C.(-2,9) D.(-2,-9)8.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是A. B. C. D.9.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A. B. C. D.10.如图,在△ABC中,中线BE、CF相交于点G,连接EF,下列结论:①=;②=;③=;④=.其中正确的个数有()A.1个 B. C.3个 D.4个11.如图,平行四边形中,为边的中点,交于点,则图中阴影部分面积与平行四边形的面积之比为()A. B. C. D.12.如图,一次函数分别与轴、轴交于点、,若sin,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在矩形ABCD中,AB=2,AD=,以点C为圆心,以BC的长为半径画弧交AD于E,则图中阴影部分的面积为__________.14.关于的方程的一个根是,则它的另一个根是__________.15.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.16.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援,海警船到达事故船处所需的时间大约为________小时(用根号表示).17.以原点O为位似中心,将△AOB放大到原来的2倍,若点A的坐标为(2,3),则点A的对应点的坐标为_______.18.光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图①所示:折射率(代表入射角,代表折射角).小明为了观察光线的折射现象,设计了图②所示的实验;通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块,图③是实验的示意图,点A,C,B在同一直线上,测得,则光线从空射入水中的折射率n等于________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线过点A(—1,0),与⊙C相切于点D,求直线的解析式.20.(8分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x
30
32
34
36
y
40
36
32
28
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?21.(8分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在中,点在线段上,,,,,求的长.经过数学小组成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图2)请回答:,.(2)请参考以上解决思路,解决问题:如图在四边形中对角线与相交于点,,,,.求的长.22.(10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?23.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:△APD≌△CPD;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.24.(10分)如图,一次函数图象经过点,与轴交于点,且与正比例函数的图象交于点,点的横坐标是.请直接写出点的坐标(,);求该一次函数的解析式;求的面积.25.(12分)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.26.如图,平行四边形中,,是上一点,,连接,点是的中点,且满足是等腰直角三角形,连接.(1)若,求的长;(2)求证:.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据黄金分割的比值约为0.1列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.1=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.2、B【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【详解】解:∵OP=5>3,
∴点P与⊙O的位置关系是点在圆外.
故选:B.【点睛】本题主要考查了点与圆的位置关系,理解并掌握点和圆的位置关系与数量之间的等价关系是解题的关键.3、B【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、,故A选项正确;B、在Rt△ADC中,cos∠ACD=,∴cosβ=,∴AO=,故B选项错误;C、在Rt△BCD中,tan∠BDC=,∴tanβ=∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=,∴cosβ=∴,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.4、D【分析】根据抛物线与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知,故C错误;根据图象经过点两点,即可得出对称轴为直线.【详解】解:A、由图可知,抛物线交于y轴负半轴,所以c<0,故A错误;B、由图可知,抛物线与x轴有两个交点,则,故B错误;C、由图象可知,当x=1时,图象在x轴的下方,则,故C错误;D、因为图象经过点两点,所以抛物线的对称轴为直线,故D正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质.5、C【解析】如图,连接BF交y轴于P,
∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),
∴点C的坐标为(0,4),点G的坐标为(0,1),
∴CG=3,
∵BC∥GF,∴,∴GP=1,PC=2,
∴点P的坐标为(0,2),
故选C.【点睛】本题考查的是位似变换的概念、坐标与图形性质,掌握如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心是解题的关键.6、D【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年则有方程[5000(1+x)﹣3000]•(1+x)=2750,解这个方程即可求解.【详解】设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理两年后是[5000(1+x)﹣3000](1+x),即方程为[5000(1+x)﹣3000]•(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合题意,故舍去),即年利率是10%.故选:D.【点睛】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金×(1+利率×期数),难度一般.7、A【分析】把抛物线解析式化为顶点式即可求得答案.【详解】∵,∴顶点坐标为(2,9).故选:A.【点睛】本题主要考查了二次函数的性质,掌握二次函数的顶点式是解答此题的关键,即在中,对称轴为x=h,顶点坐标为(h,k).8、A【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9、C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,
∴两个骰子的点数相同的概率为:故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比10、C【解析】根据三角形的中位线定理推出FE∥BC,利用平行线分线段成比例定理、相似三角形的判定与性质和等底同高的三角形面积相等一一判断即可.【详解】∵AF=FB,AE=EC,∴FE∥BC,FE:BC=1:2,∴,故①③正确.∵FE∥BC,FE:BC=1:2,∴FG:GC=1:2,△FEG∽△CBG.设S△FGE=S,则S△EGC=2S,S△BGC=4s,∴,故②错误.∵S△FGE=S,S△EGC=2S,∴S△EFC=3S.∵AE=EC,∴S△AEF=3S,∴=,故④正确.故选C.【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11、C【分析】根据等底等高的三角形面积比和相似三角形的相似比推出阴影部分面积.【详解】设平行四边形的边AD=2a,AD边上的高为3b;过点E作EF⊥AD交AD于F,延长FE交BC于G
∴平行四边形的面积是6ab
∴FG=3b
∵AD∥BC
∴△AED∽△CEM
∵M是BC边的中点,
∴,
∴EF=2b,EG=b
∴∵∴∴阴影部分面积=∴阴影部分面积:平行四边形的面积=
故选:C.【点睛】本题主要考查了相似三角形的性质,相似三角形的对应边上的高线的比等于相似比.12、D【分析】由解析式求得图象与x轴、y轴的交点坐标,再由sin,求出AB,利用勾股定理求出OA=,由此即可利用OA=1求出k的值.【详解】∵,∴当x=0时,y=-k,当y=0时,x=1,∴B(0,-k),A(1,0),∵sin,∴,∵OB=-k,∴AB=,∴OA==∴=1,∴k=,故选:D.【点睛】此题考查一次函数的性质,勾股定理,三角函数,解题中综合运用,题中求出AB,利用勾股定理求得OA的长是解题的关键.二、填空题(每题4分,共24分)13、【分析】连接CE,根据矩形和圆的性质、勾股定理可得,从而可得△CED是等腰直角三角形,可得,即可根据阴影部分的面积等于扇形面积加三角形的面积求解即可.【详解】连接CE∵四边形ABCD是矩形,AB=2,AD=,∴∵以点C为圆心,以BC的长为半径画弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴阴影部分的面积故答案为:.【点睛】本题考查了阴影部分面积的问题,掌握矩形和圆的性质、勾股定理、等腰直角三角形的性质、扇形的面积公式、三角形面积公式是解题的关键.14、6【分析】根据一元二次方程的根与系数的关系解答即可.【详解】解:设方程的另一个根是,则,解得:.故答案为:6.【点睛】本题考查了一元二次方程根与系数的关系,属于基础题型,熟练掌握一元二次方程的两根之和与两根之积与其系数的关系是解此类题的关键.15、【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵theorem中的7个字母中有2个字母e,∴任取一张,那么取到字母e的概率为.16、【分析】过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=(海里),然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=60海里,∴CD=AC=30海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°-37°=53°,∴BC=(海里),∴海警船到大事故船C处所需的时间大约为:20÷40=(小时).故答案为.【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.17、(4,6)或(-4,-6)【分析】由题意根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】解:∵点A的坐标分别为(2,3),以原点O为位似中心,把△△AOB放大为原来的2倍,则A′的坐标是:(4,6)或(-4,-6).故答案为:(4,6)或(-4,-6).【点睛】本题考查位似图形与坐标的关系,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于k或-k.18、【分析】过D作GH⊥AB于点H,利用勾股定理求出BD和CD,再分别求出入射角∠PDG和折射角∠CDH的正弦值,根据公式可得到折射率.【详解】如图,过D作GH⊥AB于点H,在Rt△BDF中,BF=12cm,DF=16cm∴BD=cm∵四边形BFDH为矩形,∴BH=DF=16cm,DH=BF=12cm又∵BC=7cm∴CH=BH-BC=9cm∴CD=cm∵入射角为∠PDG,sin∠PDG=sin∠BDH=折射角为∠CDH,sin∠CDH=∴折射率故答案为:.【点睛】本题主要考查了勾股定理和求正弦值,解题的关键是找出图中的入射角与折射角,并计算出正弦值.三、解答题(共78分)19、或.【详解】解:如图所示,连接CD,∵直线为⊙C的切线,∴CD⊥AD.∵C点坐标为(1,0),∴OC=1,即⊙C的半径为1,∴CD=OC=1.又∵点A的坐标为(—1,0),∴AC=2,∴∠CAD=30°,在Rt△AOB中,,即,设直线l解析式为:y=kx+b(k≠0),则解得∴直线l的函数解析式为,同理可得,当直线l在x轴的下方时,直线l的函数解析式为.故直线l的函数解析式为或.【点睛】这是一道圆与直角坐标系的综合题,求直线的解析式,通常用待定系数法(知道图象上两个点的坐标即可),题目已给出点A的坐标,再求出一个点即可,抓住点D是直线与⊙C的切点,由C点坐标为(1,0)及圆的性质易求点B的坐标为(0,),由点A和点B的坐标易求直线的解析式20、(1)y=-2x+100;(2)35元或45元;(3)W=-2x2+160x-3000,40元时利润最大.【解析】试题分析:(1)设一次函数解析式,将表格中任意两组x,y值代入解出k,b,即可求出该解析式;(2)利润等于单件利润乘以销售量,而单件利润又等于每件商品的销售价减去进价,从而建立每件商品的销售价与利润的一元二次方程求解;(3)将w替换上题中的150元,建立w与x的二次函数,化成一般式,看二次项系数,讨论x取值,从而确定每件商品销售价定为多少元时利润最大.试题解析:(1)设该函数的表达式为y=kx+b(k≠0),根据题意,得,解得,∴该函数的表达式为y=-2x+100;(2)根据题意得:(-2x+100)(x-30)="150",解这个方程得,x1=35,x2=45∴每件商品的销售价定为35元或45元时日利润为150元.(3)根据题意得:w=(-2x+100)(x-30)=-2x2+160x-3000=-2(x-40)2+200,∵a=-2<0,则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.考点:一次函数与二次函数的实际应用.21、(1),;(2)【分析】(1)
根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠
ADB,由等角对等边可得出;
(2)
过点B作BE∥
AD交AC于点E,同(1)
可得出AE,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1),.又,.,故答案为:;.(2)过点作交于点,如图所示.,.,在中,,即,解得:在中,.【点睛】本题考查了平行线的性质、相似三角形性质及勾股定理,构造相似三角形是解题的关键,利用勾股定理进行计算是解决本题的难点.22、第二个月的单价应是70元.【解析】试题分析:设第二个月降价元,则由题意可得第二个月的销售单价为元,销售量为件,由此可得第二个月的销售额为元,结合第一个月的销售额为元和第三个月的销售额为元及总的利润为9000元,即可列出方程,解方程即可求得第二个月的销售单价.试题解析:设第二个月的降价应是元,根据题意,得:80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9000,整理,得x2-20x+100=0,解得x1=x2=10,当x=10时,80-x=70>50,符合题意.答:第二个月的单价应是70元.点睛:这是一道有关商品销售的实际问题,解题时需注意以下几点:(1)进货成本=商品进货单价×进货数量;(2)销售金额=商品销售单价×销售量;(3)利润=销售金额-进货成本;(4)若商品售价每降价元,销量增加件,则当售价降低元时,销量增加:件.23、(1)证明见解析;(2)90°;(3)AP=CE.【分析】(1)利用正方形得到AD=CD,∠ADP=∠CDP=45,即可证明全等;(2)设,利用三角形内角和性质及外角性质得到,,再利用周角计算得出x值;(3)AP=CE.设,利用三角形内角和性质及外角性质得到,,求出,得到是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都银杏酒店管理学院《创业教育》2023-2024学年第一学期期末试卷
- 二零二五年农业代理服务合同规范2篇
- 2024年财务规划建议书
- 2024消防器材销售及安装合同补充协议3篇
- 2024正规的劳务合同范本
- 2024年设备安装安全协议3篇
- 隔墙工程施工方案
- 2024某科技公司与某供应商就硬件采购合同
- 2023-2029年中国植物药提取物行业竞争格局及市场发展潜力预测报告
- 涵闸施工方案
- GB 4396-2024二氧化碳灭火剂
- 美丽的秋天景色作文500字小学
- 施工单位2025年度安全生产工作总结及计划
- 护理质量委员会会议
- 2024年护理质量分析
- 2024-2025学年高中物理举一反三专题2.1 简谐运动【八大题型】(含答案)
- EPC模式承包人建议书及承包人实施方案
- 2025人教版九年级英语全册知识点清单
- 2024版 新能源电站单位千瓦造价标准
- 临床医技科室6S管理制度
- 小红书代运营协议模板
评论
0/150
提交评论