版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在△ABC中,AB=AC=13,BC=24,则tanB等于()A. B. C. D.2.下列函数中,函数值随自变量x的值增大而增大的是()A. B. C. D.3.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.34.如图所示的几何体的左视图为()A. B. C. D.5.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A. B.2 C. D.6.抛物线y=2(x﹣3)2+2的顶点坐标是()A.(﹣3,2) B.(3,2) C.(﹣3,﹣2) D.(3,﹣2)7.若式子在实数范围内有意义,则的取值范围是()A. B. C. D.8.若是一元二次方程的两个实数根,则的值为()A. B. C. D.9.在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(-3,2)10.在反比例函数y=图象的每一条曲线上,y都随x的增大而增大,则k的取值范围是()A.k>2 B.k>0 C.k≥2 D.k<2二、填空题(每小题3分,共24分)11.小红在地上画了半径为2m和3m的同心圆,如图,然后在一定距离外向圈内掷小石子,则掷中阴影部分的概率是_____.12.一元二次方程x(x﹣3)=3﹣x的根是____.13.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为_____.14.若抛物线与轴没有交点,则的取值范围是__________.15.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为__________.16.将抛物线向右平移2个单位长度,则所得抛物线对应的函数表达式为______.17.如图,点A是反比例函数的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC,BC,若△ABC的面积为4,则k的值是_____.18.大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势,应选用________统计图来描述数据.三、解答题(共66分)19.(10分)如图,点D是AC上一点,BE//AC,AE分别交BD、BC于点F、G,若∠1=∠2,线段BF、FG、FE之间有怎样的关系?请说明理由.20.(6分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.(1)试判断BC与⊙O的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).21.(6分)如图,一次函数y1=mx+n与反比例函数y2=(x>0)的图象分别交于点A(a,4)和点B(8,1),与坐标轴分别交于点C和点D.(1)求一次函数与反比例函数的解析式;(2)观察图象,当x>0时,直接写出y1>y2的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.22.(8分)万州三中初中数学组深知人生最具好奇心和幻想力、创造力的时期是中学时代,经研究,为我校每一个初中生推荐一本中学生素质数育必读书《数学的奥秘》,这本书就是专门为好奇的中学生准备的.这本书不但给于我们知识,解答生活中的疑惑,更重要的是培养我们细致观察、认真思考、勤于动手的能力.经过一学期的阅读和学习,为了了解学生阅读效果,我们从初一、初二的学生中随机各选20名,对《数学的奥秘》此书阅读效果做测试(此次测试满分:100分).通过测试,我们收集到20名学生得分的数据如下:初一96100899562759386869395958894956892807890初二10098969594929292929286848382787874646092通过整理,两组数据的平均数、中位数、众数和方差如表:年级平均数中位数众数方差初一87.591m96.15初二86.2n92113.06某同学将初一学生得分按分数段(,,,),绘制成频数分布直方图,初二同学得分绘制成扇形统计图,如图(均不完整),初一学生得分频数分布直方图初二学生得分扇形统计图(注:x表示学生分数)请完成下列问题:(1)初一学生得分的众数________;初二学生得分的中位数________;(2)补全频数分布直方图;扇形统计图中,所对用的圆心角为________度;(3)经过分析________学生得分相对稳定(填“初一”或“初二”);(4)你认为哪个年级阅读效果更好,请说明理由.23.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD⊥DC于D,且AC平分∠DAB.延长DC交AB的延长线于点P.(1)求证:PC2=PA•PB;(2)若3AC=4BC,⊙O的直径为7,求线段PC的长.24.(8分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.25.(10分)在平面直角坐标系中,抛物线经过点,.(1)求这条抛物线所对应的函数表达式.(2)求随的增大而减小时的取值范围.26.(10分)已知:△ABC中∠ACB=90°,E在AB上,以AE为直径的⊙O与BC相切于D,与AC相交于F,连接AD.(1)求证:AD平分∠BAC;(2)若DF∥AB,则BD与CD有怎样的数量关系?并证明你的结论.
参考答案一、选择题(每小题3分,共30分)1、B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=,故tanB=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.2、A【解析】一次函数当时,函数值总是随自变量的增大而增大,反比例函数当时,在每一个象限内,随自变量增大而增大.【详解】、该函数图象是直线,位于第一、三象限,随增大而增大,故本选项正确;、该函数图象是直线,位于第二、四象限,随增大而减小,故本选项错误;、该函数图象是双曲线,位于第一、三象限,在每一象限内,随增大而减小,故本选项错误;、该函数图象是双曲线,位于第二、四象限,在每一象限内,随增大而增大,故本选项错误.故选:.【点睛】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.3、C【详解】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD=,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴,∴,∴OF=2.故选C.考点:1.切线的性质;2.菱形的性质.4、D【解析】根据左视图是从几何体左面看得到的图形,认真观察实物,可得这个几何体的左视图为长方形,据此观察选项即可得.【详解】观察实物,可知这个几何体的左视图为长方形,只有D选项符合题意,故选D.【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键.注意错误的选项B、C.5、A【解析】试题分析:连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD=,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.考点:(1)垂径定理;(2)勾股定理.6、B【分析】根据y=a(x﹣h)2+k,顶点坐标是(h,k)可得答案.【详解】解:抛物线y=2(x﹣3)2+2的顶点坐标是(3,2),故选:B【点睛】本题考查二次函数的性质;熟练掌握二次函数由解析式求顶点坐标的方法是解题的关键.7、C【解析】直接利用二次根式的定义即可得出答案.【详解】∵式子在实数范围内有意义,∴x的取值范围是:x>1.故选:C.【点睛】本题考查了二次根式有意义的条件,正确把握定义是解答本题的关键.8、C【分析】由一元二次方程根与系数的关系可得x1+x2=-3,x1·x2=2,利用完全平方公式即可求出答案.【详解】∵是一元二次方程的两个实数根,∴x1+x2=-3,x1·x2=2,∴=(x1+x2)2-2x1·x2=9-4=5,故选:C.【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个实数根为,那么x1+x2=,x1·x2=,熟练掌握韦达定理是解题关键.9、B【解析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)”解答.【详解】根据中心对称的性质,得点P(2,-3)关于原点对称的点的坐标是(-2,3).故选B.【点睛】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.10、D【分析】根据反比例函数的性质,可求k的取值范围.【详解】∵反比例函数y=图象的每一条曲线上,y都随x的增大而增大,∴k﹣2<0,∴k<2故选:D.【点睛】考核知识点:反比例函数.理解反比例函数性质是关键.二、填空题(每小题3分,共24分)11、.【分析】分别计算出阴影部分面积和非阴影面积,即可求出掷中阴影部分的概率.【详解】∵大圆半径为3,小圆半径为2,∴S大圆(m2),S小圆(m2),S圆环=9π﹣4π=5π(m2),∴掷中阴影部分的概率是.故答案为:.【点睛】本题考查了几何概率的求法,用到的知识点为:概率=相应的面积与总面积之比.12、x1=3,x2=﹣1.【分析】整体移项后,利用因式分解法进行求解即可.【详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x1=3,x2=﹣1.13、【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.14、;【分析】利用根的判别式△<0列不等式求解即可.【详解】解:∵抛物线与轴没有交点,∴,即,解得:;故答案为:.【点睛】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键.15、或【解析】由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点即可.【详解】解:由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点,如图所示,由于是钝角三角形,故舍去(5,2),故答案为或.【点睛】本题考查了三角形的外心,即到三角形三个顶点距离相等的点,解题的关键是画图找到C点.16、【分析】利用顶点式根据平移不改变二次项系数可得新抛物线解析式.【详解】的顶点为(−1,0),∴向右平移2个单位得到的顶点为(1,0),∴把抛物线向右平移2个单位,所得抛物线的表达式为.故答案为:.【点睛】本题考查了二次函数图象与几何变换,熟练掌握“左加右减,上加下减”的平移规则是解题的关键.17、-8【解析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【详解】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8故答案为﹣8【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.18、折线【解析】试题解析:根据题意,得要求清楚地表示销售总量的总趋势是上升还是下降,结合统计图各自的特点,应选用折线统计图,三、解答题(共66分)19、BF2=FG·EF.【解析】由题意根据BE∥AC,可得∠1=∠E,然后有∠1=∠2,可得∠2=∠E,又由∠GFB=∠BFE,可得出△BFG∽△EFB,最后可得出BF2=FG•FE.【详解】解:BF2=FG·EF.证明:∵BE∥AC,∴∠1=∠E.∵∠1=∠2,∴∠2=∠E.又∵∠BFG=∠EFB,∴△BFG∽△EFB.∴,∴BF2=FG·EF.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是根据BE∥AC,得出∠1=∠E,进而判定△BFG∽△EFB.20、(1)BC与⊙O相切,理由见解析;(2).【解析】试题分析:(1)连接推出根据切线的判定推出即可;
(2)连接求出阴影部分的面积=扇形的面积,求出扇形的面积即可.试题解析:(1)BC与相切,理由:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴OD⊥BC,∴BC与相切;(2)连接OE,ED,∴△OAE为等边三角形,又∴阴影部分的面积=S扇形ODE21、(1)y1=﹣x+5,y2=;(2)2<x<1;(3)点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【分析】(1)先将点B代入反比例函数解析式中求出反比例函数的解析式,然后进一步求出A的坐标,再将A,B代入一次函数中求一次函数解析式即可;(2)根据图象和两函数的交点即可写出y1>y2的解集;(3)先求出C,D的坐标,从而求出CD,AD,OD的长度,然后分两种情况:当时,△COD∽△APD;当时,△COD∽△PAD,分别利用相似三角形的性质进行讨论即可.【详解】解:(1)把B(1,1)代入反比例函数中,则,解得∴反比例函数的关系式为,∵点A(a,4)在图象上,∴a==2,即A(2,4)把A(2,4),B(1,1)两点代入y1=mx+n中得解得:,所以直线AB的解析式为:y1=﹣x+5;反比例函数的关系式为y2=,(2)由图象可得,当x>0时,y1>y2的解集为2<x<1.(3)由(1)得直线AB的解析式为y1=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==∵A(2,4),∴AD==4设P点坐标为(a,0),由题可知,点P在点D左侧,则PD=10﹣a由∠CDO=∠ADP可得①当时,,如图1此时,∴,解得a=2,故点P坐标为(2,0)②当时,,如图2当时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【点睛】本题主要考查反比例函数与一次函数的综合,相似三角形的判定与性质,掌握待定系数法和相似三角形的判定及性质是解题的关键.22、(1)95分,92分;(2)54;(3)初一;(4)初一,见解析【分析】(1)根据众数和中位数知识计算即可;(2)根据总人数为20人,算出的人数,补全频数分布直方图;再根据表格得出的人数,求出所占的百分比,算出圆心角度数即可;(3)根据初一,初二学生得分的方差判断即可;(4)根据平均数和方差比较,得出结论即可.【详解】解:(1)初一学生得分的众数(分),初二年级得分排列为60,64,74,78,78,82,83,84,86,92,92,92,92,92,92,94,95,96,98,100,初二学生得分的中位数(分),故答案为:95分,92分;(2)的人数为:20-2-2-11=5(人),补全频数分布直方图如下:扇形统计图中,人数为3人,则所对用的圆心角为,故答案为:54;(3)初一得分的方差小于初二得分的方差,∴初一学生得分相对稳定,故答案为:初一;(4)初一阅读效果更好,∵初一阅读成绩的平均数大于初二阅读成绩的平均数,初一得分的方差小于初二得分的方差,∴初一阅读效果更好(答案不唯一,言之有理即可).【点睛】本题是对统计知识的综合考查,熟练掌握频数分布直方图,扇形统计图,及方差知识是解决本题的关键.23、(1)见解析;(2)PC=1.【分析】(1)证明△PAC∽△PCB,可得,即可证明PC2=PA•PB;(2)若3AC=4BC,则,由(1)可求线段PC的长.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°.∵AD⊥DC于D,且AC平分∠DAB,∴∠PDA=90°,∠DAC=∠BAC.∵∠PCA=∠PDA+∠DAC,∠PBC=∠ACB+∠BAC,∴∠PCA=∠PBC.∵∠BPC=∠CPA,∴△PAC∽△PCB,∴,∴PC2=PA•PB;(2)∵3AC=4BC,∴.设PC=4k,则PB=3k,PA=3k+7,∴(4k)2=3k(3k+7),∴k=3或k=0(舍去),∴PC=1.【点睛】本题考查了三角形相似的判定与性质,圆周角定理,解一元二次方程等知识,熟练掌握相似三角形的判定与性质是解答本题的关键.24、(1)y=x2﹣3x﹣4;(2)存在,P(,﹣2);(3)当P点坐标为(2,﹣6)时,△PBC的最大面积为1.【详解】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.试题解析:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PD,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)×4=﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财富卡转让协议书
- 肺癌的诊断及治疗
- 针灸治疗颈椎病腰椎病
- 艺术活动:我的妈妈真漂亮
- 《J类船用自闭式油位计》
- 广西玉林市北流市2024-2025学年七年级上学期11月期中数学试题(含答案)
- 2025新课改-高中物理-选修第1册(21讲)18 B全反射 中档版含答案
- 简单糖尿病视网膜病变
- 气浮电主轴行业相关投资计划提议
- 在线编辑软件相关行业投资规划报告
- 2024秋国开《现代教育管理专题》平时作业1-4答案
- 【7道人教版期中】安徽省怀宁县2023-2024学年七年级上学期期中考试道德与法治试卷(含详解)
- 2025届福建省厦门市外国语学校高二数学第一学期期末考试试题含解析
- 贵阳一中2025届高三10月高考适应性月考(二) 思想政治试卷(含答案)
- 2024年鹿城区区属国企业面向社会和面向退役士兵公开招聘(选调)工作人员高频考题难、易错点模拟试题(共500题)附带答案详解
- 7《两件宝》(教学设计)2024-2025学年统编版语文一年级上册
- 外墙亮化工程施工方案
- 5.2.3 解一元一次方程-去括号课件 2024-2025学年人教版(2024)数学七年级上册
- 第六单元 多边形的面积(单元测试)-2024-2025学年五年级上册数学人教版
- 2024年全国环保产业职业技能竞赛(工业废水处理工)考试题库(含答案)
- 2025数学步步高大一轮复习讲义人教A版复习讲义含答案
评论
0/150
提交评论