北京十一学校2022年数学九年级第一学期期末监测模拟试题含解析_第1页
北京十一学校2022年数学九年级第一学期期末监测模拟试题含解析_第2页
北京十一学校2022年数学九年级第一学期期末监测模拟试题含解析_第3页
北京十一学校2022年数学九年级第一学期期末监测模拟试题含解析_第4页
北京十一学校2022年数学九年级第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示几何体的左视图正确的是()A. B. C. D.2.根据国家外汇管理局公布的数据,截止年月末,我国外汇储备规模为亿美元,较年初上升亿美元,升幅,数据亿用科学计数法表示为()A. B. C. D.3.已知⊙O的直径为12cm,如果圆心O到一条直线的距离为7cm,那么这条直线与这个圆的位置关系是()A.相离 B.相切 C.相交 D.相交或相切4.如图,矩形的对角线交于点O,已知则下列结论错误的是()A. B.C. D.5.气象台预报“铜陵市明天降水概率是75%”.据此信息,下列说法正确的是()A.铜陵市明天将有75%的时间降水 B.铜陵市明天将有75%的地区降水C.铜陵市明天降水的可能性比较大 D.铜陵市明天肯定下雨6.已知关于的一元二次方程有两个实数根,,则代数式的值为()A. B. C. D.7.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A. B. C. D.8.如图,是的直径,点、、在上.若,则的度数为()A. B. C. D.9.如图,该几何体的主视图是()A. B. C. D.10.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x,则根据题意可得方程()A. B.C. D.二、填空题(每小题3分,共24分)11.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.12.若一元二次方程x2-2x+m=0有两个不相同的实数根,则实数m的取值范围是___.13.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.14.一个三角形的三边之比为,与它相似的三角形的周长为,则与它相似的三角形的最长边为____________.15.如图,PA、PB是⊙O的两条切线,点A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB=___°.16.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=_____.17.已知反比例函数的图象经过点P(a+1,4),则a=_________________.18.等边三角形ABC绕着它的中心,至少旋转______度才能与它本身重合三、解答题(共66分)19.(10分)如图,菱形的顶点在菱形的边上,与相交于点,,若,,求菱形的边长.20.(6分)如图所示,四边形ABCD中,AD∥BC,∠A=90°,∠BCD<90°,AB=7,AD=2,BC=3,试在边AB上确定点P的位置,使得以P、C、D为顶点的三角形是直角三角形.21.(6分)(1)解方程:.(2)如图,四点都在上,为直径,四边形是平行四边形,求的度数.22.(8分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.23.(8分)如图1,正方形的边在正方形的边上,连接.(1)和的数量关系是____________,和的位置关系是____________;(2)把正方形绕点旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形的边长为4,正方形的边长为,正方形绕点旋转过程中,若三点共线,直接写出的长.24.(8分)如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).(1)求实数、、的值;(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?若存在请求出所有的点的坐标,若不存在请说明理由.(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.25.(10分)如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.(1)、求证:△ABE≌△ADF;(2)、若等边△AEF的周长为6,求正方形ABCD的边长.26.(10分)学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(:特别好,:好,:一般,:较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了______名学生;(2)将条形统计图补充完整;扇形统计图中类学生所对应的圆心角是_________度;(3)为了共同进步,陈老师从被调查的类和类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.

参考答案一、选择题(每小题3分,共30分)1、A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图2、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】亿=3.0924×1012,

故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、A【分析】这条直线与这个圆的位置关系只要比较圆心到直线的距离与半径的大小关系即可.【详解】∵⊙O的直径为12cm,∴⊙O的半径r为6cm,如果圆心O到一条直线的距离d为7cm,d>r,这条直线与这个圆的位置关系是相离.故选择:A.【点睛】本题考查直线与圆的位置关系问题,掌握点到直线的距离与半径的关系是关键.4、C【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各项即可.【详解】选项A,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,选项A正确;选项B,在Rt△ABC中,tanα=,即BC=m•tanα,选项B正确;选项C,在Rt△ABC中,AC=,即AO=,选项C错误;选项D,∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,选项D正确.故选C.【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.5、C【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案.【详解】解:根据概率表示某事情发生的可能性的大小,分析可得:

A、铜陵市明天将有75%的时间降水,故此选项错误;

B、铜陵市明天将有75%的地区降水,故此选项错误;

C、明天降水的可能性为75%,比较大,故此选项正确;

D、明天肯定下雨,故此选项错误;

故选:C.【点睛】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.6、B【分析】由题意根据根与系数的关系以及方程的解的概念即可求出答案.【详解】解:由根与系数的关系可知:,∴1+n=-m,n=3,∴m=-4,n=3,∴.故选:B.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系求值与代入求值.7、A【分析】由题意可得,共有10种等可能的结果,其中从口袋中任意摸出一个球是白球的有5种情况,利用概率公式即可求得答案.【详解】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故选A.【点睛】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.8、C【分析】连接AD,BD,由圆周角定理可得∠ABD=25°,∠ADB=90°,从而可求得∠BAD=65°,再由圆的内接四边形对角互补得到∠BCD=115°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=25°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-25°=65°,∴∠BCD=180°-65°=115°.故选C【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.9、D【解析】试题分析:根据主视图是从正面看到的图形,因此可知从正面看到一个长方形,但是还得包含看不到的一天线(虚线表示),因此第四个答案正确.故选D考点:三视图10、B【分析】根据题意,找出等量关系列出方程,即可得到答案.【详解】解:根据题意,设此款理财产品每期的平均收益率为x,则;故选择:B.【点睛】本题考查了一元二次方程的应用——增长率问题,解题的关键是找到等量关系,列出方程.二、填空题(每小题3分,共24分)11、1【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.【详解】解:根据勾股定理得:斜边为=17,设内切圆半径为r,由面积法r=3(步),即直径为1步,

故答案为:1.考点:三角形的内切圆与内心.12、【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】解:∵方程x2−2x+m=0有两个不相同的实数根,∴△=(−2)2−4m>0,解得:m<1.故答案为:m<1.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.13、【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=,OG=GF=,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG=HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:AH=∴AB=∴四边形ABCD的面积=AB×GH=.故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.14、18cm.【分析】由一个三角形的三边之比为3:6:4,可得与它相似的三角形的三边之比为3:6:4,又由与它相似的三角形的周长为39cm,即可求得答案.【详解】解:∵一个三角形的三边之比为3:6:4,∴与它相似的三角形的三边之比为3:6:4,∵与它相似的三角形的周长为39cm,∴与它相似的三角形的最长边为:39×=18(cm).

故答案为:18cm.【点睛】此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例.15、70°【分析】连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA、OB,∠ACB=55°,∴∠AOB=110°∵PA、PB是⊙O的两条切线,点A、B为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=70°故答案为:70【点睛】本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键16、1.【分析】求代数式的值,一元二次方程的解,一元二次方程根与系数的关系.【详解】解:∵m、n是一元二次方程x2+2x-7=0的两个根,∴m2+2m-7=0,即m2+2m=7;m+n=-2.∴m2+1m+n=(m2+2m)+(m+n)=7-2=1.故答案为:117、-3【分析】直接将点P(a+1,4)代入求出a即可.【详解】直接将点P(a+1,4)代入,则,解得a=-3.【点睛】本题主要考查反比例函数图象上点的坐标特征,熟练掌握反比例函数知识和计算准确性是解决本题的关键,难度较小.18、120【分析】根据等边三角形的性质,结合图形可以知道旋转角度应该等于120°.【详解】解:等边△ABC绕着它的中心,至少旋转120度能与其本身重合.【点睛】本题考查旋转对称图形及等边三角形的性质.三、解答题(共66分)19、9【分析】连接,首先证明是等边三角形,再证明,推出,由此构建方程即可解决问题.【详解】解:连接.在菱形和菱形中,,,是等边三角形,设,则,,,,,,,,,,,或1(舍弃),,【点睛】本题考查相似多边形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.20、在线段AB上且距离点A为1、6、处.【分析】分∠DPC=90°,∠PDC=90,∠PDC=90°三种情况讨论,在边AB上确定点P的位置,根据相似三角形的性质求得AP的长,使得以P、A、D为顶点的三角形是直角三角形.【详解】(1)如图,当∠DPC=90°时,∴∠DPA+∠BPC=90°,∵∠A=90°,∴∠DPA+∠PDA=90°,∴∠BPC=∠PDA,∵AD∥BC,∴∠B=180°-∠A=90°,∴∠A=∠B,∴△APD∽△BCP,∴,∵AB=7,BP=AB-AP,AD=2,BC=3,∴,∴AP2﹣7AP+6=0,∴AP=1或AP=6,(2)如图:当∠PDC=90°时,过D点作DE⊥BC于点E,∵AD//BC,∠A=∠B=∠BED=90°,∴四边形ABED是矩形,∴DE=AB=7,AD=BE=2,∵BC=3,∴EC=BC-BE=1,在Rt△DEC中,DC2=EC2+DE2=50,设AP=x,则PB=7﹣x,在Rt△PAD中PD2=AD2+AP2=4+x2,在Rt△PBC中PC2=BC2+PB2=32+(7﹣x)2,在Rt△PDC中PC2=PD2+DC2,即32+(7﹣x)2=50+4+x2,解方程得:.(3)当∠PDC=90°时,∵∠BCD<90°,∴点P在AB的延长线上,不合题意;∴点P的位置有三处,能使以P、A、D为顶点的三角形是直角三角形,分别在线段AB上且距离点A为1、6、处.【点睛】本题考查了相似三角形的判定与性质及勾股定理,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;解题时要认真审题,选择适宜的判定方法,熟练掌握相似三角形的判定定理并运用分类讨论的思想是解题关键.21、(1);(2)【分析】(1)根据配方法解一元二次方程即可;(2)根据圆内接四边形求角度,再根据圆周角定理:一条弧所对的圆周角等于它所对圆周角的一半解答即可.【详解】(1)解:,,即,即,解得.(2)解:∵四边形是平行四边形,,∴四边形是菱形,即是等边三角形,∴,∴.【点睛】本题主要考察了解一元二次方程以及圆的相关性质,熟练掌握圆周角定理和圆的内接四边形的性质是解题的关键.22、(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4).【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.【详解】(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM最大=;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=2,n2﹣2n﹣3=-3,P(2,-3);当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=3+(不符合题意,舍),n3=3-,n2﹣2n﹣3=2-4,P(3-,2-4);综上所述:P(2,﹣3)或(3-,2﹣4).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.23、(1);(2)成立,见解析;(3)和【分析】(1)由题意通过证明,得到,再通过等量代换,得到;(2)由题意利用全等三角形的判定证明,得到,再通过等量代换进而得到;(3)根据题意分E在线段AC上以及E在线段AC的延长线上两种情况进行分类讨论.【详解】解:(1)∵四边形和四边形都是正方形,∴BC=CD,EC=CG,∴(SAS),∴;又∵;∴∴;(2)如图:成立,证明:,∴,∴,又∵,∴,即(3)①如图,E在线段AC上,∵∴OE=EC-OC==,OB==2,由勾股定理可知DG=BE=;②如图,E在线段AC的延长线上,∵∴,∴∴在中∵∴.故答案为:和.【点睛】本题考查正方形的性质以及全等三角形,熟练掌握正方形的性质以及全等三角形的判定与性质是解题的关键.24、(1),;(1)存在,,,,,;(3)【分析】(1)由点A在双曲线上,可得k的值,进而得出双曲线的解析式.设(),过A作AP⊥x轴于P,BQ⊥y轴于Q,直线BQ和直线AP相交于点M.根据=3解方程即可得出k的值,从而得出点B的坐标,把A、B的坐标代入抛物线的解析式即可得到结论;(1)抛物线对称轴为,设,则可得出;;.然后分三种情况讨论即可;(3)设M(x,y).由MO=MA=MB,可求出M的坐标.作B关于y轴的对称点B'.连接B'M交y轴于Q.此时△BQM的周长最小.用两点间的距离公式计算即可.【详解】(1)由知:k=xy=1×4=4,∴.设().过A作AP⊥x轴于P,BQ⊥y轴于Q,直线BQ和直线AP相交于点M,则S△AOP=S△BOQ=1.令:,整理得:,解得:,.∵m<0,∴m=-1,故.把A、B带入解出:,∴.(1)∴抛物线的对称轴为.设,则,,.∵△POB为等腰三角形,∴分三种情况讨论:①,即,解得:,∴,;②,即,解得:,∴,;③,即,解得:∴;(3)设.∵,,,∴,,.∵,∴解得:,∴.作B关于y轴的对称点B'坐标为:(1,-1).连接B'M交y轴于Q.此时△BQM的周长最小.=MB'+MB.【点睛】本题是二次函数综合题.考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等.第(1)问的关键是割补法;第(1)问的关键是分类讨论;第(3)问的关键是求出M的坐标.25、(1)证明见解析;(2).【解析】试题分析:(1)根据四边形ABCD是正方形,得出AB=AD,∠B=∠D=90°,再根据△AEF是等边三角形,得出AE=AF,最后根据HL即可证出△ABE≌△ADF;(2)根据等边△AEF的周长是6,得出AE=EF=AF的长,再根据(1)的证明得出CE=CF,∠C=90°,从而得出△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论