版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在下列长度的各组线段中,能组成三角形的是()A.,, B.,, C.,, D.,,2.如图,在直角坐标系中,点、的坐标分别为和,点是轴上的一个动点,且、、三点不在同一条直线上,当的周长最小时,点的纵坐标是()A.0 B.1 C.2 D.33.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是A. B. C. D.4.10名初中毕业生的中考体育考试成绩如下:25262626262728292930,这些成绩的中位数是()A.25 B.26 C.26.5 D.305.线段CD是由线段AB平移得到的,点A(3,-1)的对应点C的坐标是(-2,5),则点B(0,4)的对应点D的坐标是().A.(5,-7) B.(4,3) C.(-5,10) D.(-3,7)6.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A. B.C. D.7.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B8.若,则的值为()A. B. C. D.9.已知点P(4,a+1)与点Q(-5,7-a)的连线平行于x轴,则a的值是(
)A.2 B.3 C.4 D.510.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A. B.C. D.11.两条直线与在同一直角坐标系中的图象位置可能为().A. B. C. D.12.小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是A.他离家8km共用了30min B.他等公交车时间为6minC.他步行的速度是100m/min D.公交车的速度是350m/min二、填空题(每题4分,共24分)13.二元一次方程组的解为_________.14.如图(1),在三角形ABC中,,BC边绕点C按逆时针方向旋转,在旋转过程中(图2),当时,旋转角为__________度;当所在直线垂直于AB时,旋转角为___________度.15.如图,在中,,,,则的度数为______°.16.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2017=_______.17.“内错角相等,两直线平行”的逆命题是_____.18.若a﹣b=6,ab=2,则a2+b2=_____.三、解答题(共78分)19.(8分)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2,面积为6的等腰三角形.20.(8分)已知2x-1的算术平方根是3,y+3的立方根是-1,求代数式2x+y的平方根21.(8分)如图,直线分别与轴,轴交于点,,过点的直线交轴于点.为的中点,为射线上一动点,连结,,过作于点.(1)直接写出点,的坐标:(______,______),(______,______);(2)当为中点时,求的长;(3)当是以为腰的等腰三角形时,求点坐标;(4)当点在线段(不与,重合)上运动时,作关于的对称点,若落在轴上,则的长为_______.22.(10分)某条道路限速如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪处的正前方的处,过了后,小汽车到达B处,此时测得小汽车与车速测检测仪间的距离为,这辆小汽车超速了吗?23.(10分)已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=20°,∠C=60°.求∠DAE的度数.24.(10分)在中,,射线,点在射线上(不与点重合),连接,过点作的垂线交的延长线于点.(1)如图①,若,且,求的度数;(2)如图②,若,当点在射线上运动时,与之间有怎样的数量关系?请写出你的结论,并加以证明.(3)如图③,在(2)的条件下,连接,设与射线的交点为,,,当点在射线上运动时,与之间有怎样的数量关系?请写出你的结论,并加以证明.25.(12分)如图,已知,垂足分别是.(1)证明:.(2)连接,猜想与的关系?并证明你的猜想的正确性.26.如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.(1)求证:PM+PN=BC;(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).
参考答案一、选择题(每题4分,共48分)1、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2、C【分析】如解析图作B点关于y轴的对称点B′,连接AB′交y轴一点C点,根据两点之间线段最短,这时△ABC的周长最小,求出直线AB′的解析式为,所以,直线AB′与y轴的交点C的坐标为(0,2).【详解】作B点关于y轴的对称点B′,连接AB′交y轴一点C点,如图所示:∵点、的坐标分别为和,∴B′的坐标是(-2,0)∴设直线AB′的解析式为,将A、B′坐标分别代入,解得∴直线AB′的解析式为∴点C的坐标为(0,2)故答案为C.【点睛】此题主要考查平面直角坐标系中一次函数与几何问题的综合,解题关键是根据两点之间线段最短得出直线解析式.3、A【解析】试题分析:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是.故选A.考点:由实际问题抽象出分式方程.4、C【解析】试题分析:根据中位数的定义即可得到结果.根据题意,将10名考生的考试成绩从小到大排列,找第1、6人的成绩为26,27,其平均数为(26+27)÷2=26.1,故这些成绩的中位数是26.1.故选C.考点:本题考查的是中位数点评:先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.5、C【分析】根据平移的性质计算,即可得到答案.【详解】线段CD是由线段AB平移得到的,点A(3,-1)的对应点C的坐标是(-2,5)即C的坐标是(3-5,-1+6)∴点B(0,4)的对应点D的坐标是(0-5,4+6),即(-5,10)故选:C.【点睛】本题考查了平移的知识,解题的关键是熟练掌握平移的性质,从而完成求解.6、A【分析】根据轴对称图形的概念解答即可.【详解】A、不是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选A.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,熟记轴对称图形的定义是解题关键.7、A【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.【详解】∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、角相等是解题的关键.8、A【解析】试题解析:设故选A.9、B【分析】根据平行于x轴的直线上点的坐标特征得到a+1=7-a,然后解一元一次方程即可.【详解】解:∵PQ∥x轴,
∴点P和点Q的纵坐标相同,
即a+1=7-a,
∴a=1.
故选:B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.解决本题的关键是掌握平行于x轴的直线上点的坐标特征.10、A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴.故选A.考点:由实际问题抽象出分式方程.11、B【分析】由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.【详解】解:分四种情况讨论:当a>0,b>0时,直线与的图象均经过一、二、三象限,4个选项均不符合;当a>0,b<0,直线图象经过一、三、四象限,的图象经过第一、二、四象限;选项B符合此条件;当a<0,b>0,直线图象经过一、二、四象限,的图象经过第一、三、四象限,4个选项均不符合;当a<0,b<0,直线图象经过二、三、四象限,的图象经过第二、三、四象限,4个选项均不符合;故选:B.【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.12、D【解析】A、依题意得他离家8km共用了30min,故选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故选项正确;D、公交车(30-16)min走了(8-1)km,故公交车的速度为7000÷14=500m/min,故选项错误.故选D.二、填空题(每题4分,共24分)13、【分析】方程组利用加减消元法求出解即可.【详解】解,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为,故答案为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14、701【分析】在三角形ABC中,根据三角形的内角和得到∠B=180°-38°-72°=70°,如图1,当CB′∥AB时,根据平行线的性质即可得到结论;如图2,当CB′⊥AB时根据垂直的定义即可得到结论.【详解】解:∵在三角形ABC中,∠A=38°,∠C=72°,
∴∠B=180°-38°-72°=70°,
如图1,当CB′∥AB时,旋转角=∠B=70°,∴当CB′∥AB时,旋转角为70°;
如图2,当CB′⊥AB时,∠BCB″=90°-70°=20°,
∴旋转角=180°-20°=1°,
∴当CB′⊥AB时,旋转角为1°;
故答案为:70;1.【点睛】本题考查了三角形的内角和,平行线的性质,正确的画出图形是解题的关键.15、65【分析】根据等腰三角形的三线合一求出∠ADB=90°,进而求出∠B的度数,根据等边对等角求出∠C的度数.【详解】∵AB=AC,BD=CD∴AD⊥BC∴∠ADB=90°∵∠BAD=25°∴∠B=90°-∠BAD=65°∴∠C=∠B=65°故答案为:65【点睛】本题考查了等腰三角形的性质及直角三角形的两个锐角互余,掌握等腰三角形的性质及直角三角形的性质是关键.16、【详解】解:∵OP=1,OP1=,OP2=,OP3==2,∴OP4==,…,OP2017=.故答案为.【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.17、两直线平行,内错角相等【解析】试题分析:把一个命题的条件和结论互换就得到它的逆命题.考点:命题与定理18、【分析】将代数式化成用(a-b)与ab表示的形式,然后把已知代入即可求解.【详解】a2+b2把a﹣b=6,ab=2整体代入得:原式故答案是:【点睛】本题主要考查完全平方公式,熟练掌握公式及公式的变形是解题的关键.三、解答题(共78分)19、(1)画图见解析;(2)画图见解析;(3)画图见解析;(4)画图见解析.【解析】(1)利用三角形面积求法以及直角三角形的性质画即可;(2)利用三角形面积求法以及等腰三角形的性质画出即可.(3)利用三角形面积求法以及等腰直角三角形的性质画出即可;(4)利用三角形面积求法以及等腰三角形的性质画出即可.【详解】解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示;(4)如图(4)所示.【点睛】此题主要考查了等腰三角形的性质、等腰直角三角形的性质以及作图;熟练掌握等腰三角形的性质是关键.20、±【分析】利用算术平方根、立方根定义求出x与y的值,进而求出2x+y的值,即可求出平方根.【详解】解:∵2x-1的算术平方根为3,
∴2x-1=9,
解得:x=5,
∵y+3的立方根是-1,
∴y+3=-1,
解得:y=-8,∴2x+y=2×5-8=2,
∴2x+y的平方根是±.【点睛】本题考查了立方根,算术平方根,以及平方根,熟练掌握各自的性质是解题的关键.21、(1)-2,0;2,0;(2);(3)当或时,是以为腰的等腰三角形;(4).【分析】(1)先根据求出A,B的坐标,再把B点坐标代入求出b值,即可求解C点坐标,再根据为的中点求出D点坐标;(2)先求出P点坐标得到,再根据即可求解;(3)根据题意分①②,即可列方程求解;(4)根据题意作图,可得对称点即为A点,故AD=PD=4,设,作PF⊥AC于F点,得DF=2-x,PF=-x+4,利用Rt△PFD列方程解出x,得到P点坐标,再根据坐标间的距离公式即可求解.【详解】(1)由直线AB的解析式为,令y=0,得x=-2,∴,令x=0,得y=4,∴B(0,4)把B(0,4)代入,求得b=4,∴直线BC的解析式为令y=0,得x=4,∴∵为的中点∴故答案为:-2,0;2,0;(2)由(1)得B(0,4),当为的中点时,则,∵为的中点,∴轴,,,∴∵,∴(3)∵点是射线上一动点,设,当是以为腰的等腰三角形时,①若,,解得:,(舍去),此时;②若,,解得:,此时.综上,当或时,是以为腰的等腰三角形.(4)∵关于的对称点,若落在轴上∴点为A点,∴AD=PD=4,设,作PF⊥AC于F点,∴DF=2-x,PF=-x+4,在Rt△PFD中,DF2+PF2=DP2即(2-x)2+(-x+4)2=42解得x=3-(3+舍去)∴P(3-,+1),∴==故答案为:.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、等腰三角形及直角三角形的性质.22、小汽车超速了.【分析】根据勾股定理求出小汽车在内行驶的距离,再求出其速度,与比较即可.【详解】解:在中,米,,所以小汽车超速了.【点睛】本题结合速度问题考查了勾股定理的应用,理解题意,合理运用定理是解答关键.23、20°【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠EAC=∠BAC,而∠DAC=90°﹣∠C,然后利用∠DAE=∠EAC﹣∠DAC进行计算即可.【详解】解:在△ABC中,∵∠B=20°,∠C=60°∴∠BAC=180°﹣∠B﹣∠C=180°﹣20°﹣60°=100°∵AE是的角平分线,∴∠EAC=∠BAC=×100°=50°,∵AD是△ABC的高,∴∠ADC=90°∴∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣60°=30°,∴∠DAE=∠EAC﹣∠DAC=50°﹣30°=20°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.24、(1);(2),见解析;(3),见解析【分析】(1)如图①中,首先证明△ABD是等边三角形,推出∠ABD=60°,由∠PDB+∠PAB=180°,推出∠APD+∠ABD=180°,由此即可解决问题.(2)如图②中,结论:DP=DB.只要证明△DEP≌△DNB即可.(3)结论:α+β=180°.只要证明∠1=∠3,即可解决问题.【详解】解:(1)∵,,∴,∵,∴,∵,∴△ABD是等边三角形,∴,∵,∴,∴(2)结论:,理由如下:证明:作于,于.∵,∴∵,∴,,∴,∵∴∵∴,又∵∴△DEP≌△DNB,∴.(3)结论:.由(2)可知,∵,∴∵∴∴∵∴即.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等知识,解题的关键是学会添加常用辅助线,构造全等三角形,证明角相等.25、(1)证明见解析;(2)DF=BE,DF∥BE,证明见解析.【分析】(1)求出AF=CE,∠AFB=∠DEC=90°,根据平行线的性质得出∠DCE=∠BAF,根据ASA推出△AFB≌△CED即可;(2)根据平行四边形的判定得出四边形是平行四边形,再根据平行四边形的性质得出即可.【详解】(1)证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠DEC=90°,∵DC∥AB,∴∠DCE=∠BAF,在△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自由教练协议书(2篇)
- 购买玉石的消费合同(2篇)
- 南京航空航天大学《电子商务案例分析含实践》2023-2024学年第一学期期末试卷
- 南京航空航天大学《测试技术》2021-2022学年第一学期期末试卷
- 南京工业大学浦江学院《数媒工作坊-4》2022-2023学年第一学期期末试卷
- 【初中化学】水资源及其利用第1课时课件+2024-2025学年化学人教版九年级上册
- 反证法说课稿
- 《纸的发明》说课稿
- 《学会尊重》说课稿
- 《桃花源记》说课稿9
- 2024年消防月主题培训课件:全民消防 生命至上(含11月火灾事故)
- 人教版(2024年新版)七年级数学上册期中模拟测试卷(含答案)
- 2023年度学校食堂食品从业人员考核试题(附答案)
- 2024广西公需课高质量共建“一带一路”谱写人类命运共同体新篇章答案
- 2024年连云港专业技术人员继续教育《饮食、运动和健康的关系》92分(试卷)
- 收款确认函-模板(共2页)
- 中药材、中药饮片的验收
- 老垃圾填埋作业方案
- 中考英语作文评分标准
- 老年服务伦理与礼仪课件
- 称骨歌及说明
评论
0/150
提交评论