高聚物的断裂和力学强度Chapt5TheBreakingandStrength教学课件_第1页
高聚物的断裂和力学强度Chapt5TheBreakingandStrength教学课件_第2页
高聚物的断裂和力学强度Chapt5TheBreakingandStrength教学课件_第3页
高聚物的断裂和力学强度Chapt5TheBreakingandStrength教学课件_第4页
高聚物的断裂和力学强度Chapt5TheBreakingandStrength教学课件_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高聚物的断裂和力学强度Chapt5TheBreakingandStrength幻灯片PPT本课件PPT仅供大家学习使用学习完请自行删除,谢谢!本课件PPT仅供大家学习使用学习完请自行删除,谢谢!本课件PPT仅供大家学习使用学习完请自行删除,谢谢!本课件PPT仅供大家学习使用学习完请自行删除,谢谢!高聚物的断裂和力学强度Chapt5TheBreakingan理论上,根据完全伸直链晶胞参数求得的聚乙烯最高理论强度达1.9x104MPa,是钢丝的几十倍。实验室中,已经获得高拉伸聚酰胺纤维在液氮中的最高实际强度达2.3x103MPa。在高分子材料诸多应用中,作为结构材料使用是其最常见、最重要的应用。在许多领域,高分子材料已成为金属、木材、陶瓷、玻璃等的代用品。引言之所以如此,除去它具有制造加工便利、质轻、耐化学腐蚀等优点外,还因为它具有较高的力学强度和韧性。理论上,根据完全伸直链晶胞参数求得的聚乙烯最高理论强度达本章一方面介绍描述高分子材料宏观力学强度的物理量和演化规律;另一方面从分子结构特点探讨影响高分子材料力学强度的因素,为研制设计性能更佳的材料提供理论指导。为了评价高分子材料使用价值,扬长避短地利用、控制其强度和破坏规律,进而有目的地改善、提高材料性能,需要掌握高分子材料力学强度变化的宏观规律和微观机理。鉴于高分子材料力学状态的复杂性,以及力学状态与外部环境条件密切相关,高分子材料的力学强度和破坏形式也必然与材料的使用环境和使用条件有关。本章一方面介绍描述高分子材料宏观力学强度的物理量和演化规主要内容及学习线索:一、高分子材料的拉伸应力-应变特性应力-应变曲线及其类型影响拉伸行为的外部因素强迫高弹形变与“冷拉伸”二、高分子材料的断裂和强度宏观断裂方式,脆性断裂和韧性断裂断裂过程,断裂的分子理论高分子材料的强度高分子材料的增强改性三、高分子材料的抗冲击强度和增韧改性抗冲击强度实验影响抗冲击强度的因素高分子材料的增韧改性主要内容及学习线索:一、高分子材料的应力-应变曲线及其类型影一、高分子材料的拉伸应力-应变特性

(一)应力-应变曲线及其类型

图7-1哑铃型标准试样

常用的哑铃型标准试样如图7-1所示,试样中部为测试部分,标距长度为l0,初始截面积为A0。研究材料强度和破坏的重要实验手段是测量材料的拉伸应力-应变特性。将材料制成标准试样,以规定的速度均匀拉伸,测量试样上的应力、应变的变化,直到试样破坏。一、高分子材料的拉伸应力-应变特性(一)应力-应变曲线及其设以一定的力F拉伸试样,使两标距间的长度增至,定义试样中的应力和应变为:注意此处定义的应力σ等于拉力除以试样原始截面积A0,这种应力称工程应力或公称应力,并不等于材料所受的真实应力。同样这儿定义的应变为工程应变,属于应变的Euler度量。(7-1)(7-2)典型高分子材料拉伸应力-应变曲线如图7-2所示。应力应变设以一定的力F拉伸试样,使两标距间的长度增至图7-2典型的拉伸应力-应变曲线

曲线特征:(1)OA段,为符合虎克定律的弹性形变区,应力-应变呈直线关系变化,直线斜率相当于材料弹性模量。图7-2典型的拉伸应力-应变曲线曲线特征:(1)OA(2)越过A点,应力-应变曲线偏离直线,说明材料开始发生塑性形变,极大值Y点称材料的屈服点,其对应的应力、应变分别称屈服应力(或屈服强度)和屈服应变。发生屈服时,试样上某一局部会出现“细颈”现象,材料应力略有下降,发生“屈服软化”。(3)随着应变增加,在很长一个范围内曲线基本平坦,“细颈”区越来越大。直到拉伸应变很大时,材料应力又略有上升(成颈硬化),到达B点发生断裂。与B点对应的应力、应变分别称材料的拉伸强度(或断裂强度)和断裂伸长率,它们是材料发生破坏的极限强度和极限伸长率。(4)曲线下的面积等于(7-3)相当于拉伸试样直至断裂所消耗的能量,单位为J•m-3,称断裂能或断裂功。它是表征材料韧性的一个物理量。

(2)越过A点,应力-应变曲线偏离直线,说明材料开始发生塑性由于高分子材料种类繁多,实际得到的材料应力-应变曲线具有多种形状。归纳起来,可分为五类。图7-3高分子材料应力-应变曲线的类型曲线的类型(1)硬而脆型(2)硬而强型(3)硬而韧型(4)软而韧型(5)软而弱型由于高分子材料种类繁多,实际得到的材料应力-应变曲线具有(3)硬而韧型此类材料弹性模量、屈服应力及断裂强度都很高,断裂伸长率也很大,应力-应变曲线下的面积很大,说明材料韧性好,是优良的工程材料。(1)硬而脆型此类材料弹性模量高(OA段斜率大)而断裂伸长率很小。在很小应变下,材料尚未出现屈服已经断裂,断裂强度较高。在室温或室温之下,聚苯乙烯、聚甲基丙烯酸甲酯、酚醛树脂等表现出硬而脆的拉伸行为。(2)硬而强型此类材料弹性模量高,断裂强度高,断裂伸长率小。通常材料拉伸到屈服点附近就发生破坏(大约为5%)。硬质聚氯乙烯制品属于这种类型。说明(3)硬而韧型此类材料弹性模量、屈服应力及断裂强度都很(5)软而弱型此类材料弹性模量低,断裂强度低,断裂伸长率也不大。一些聚合物软凝胶和干酪状材料具有这种特性。(4)软而韧型此类材料弹性模量和屈服应力较低,断裂伸长率大(20%~1000%),断裂强度可能较高,应力-应变曲线下的面积大。各种橡胶制品和增塑聚氯乙烯具有这种应力-应变特征。硬而韧的材料,在拉伸过程中显示出明显的屈服、冷拉或细颈现象,细颈部分可产生非常大的形变。随着形变的增大,细颈部分向试样两端扩展,直至全部试样测试区都变成细颈。很多工程塑料如聚酰胺、聚碳酸酯及醋酸纤维素、硝酸纤维素等属于这种材料。(5)软而弱型此类材料弹性模量低,断裂强度低,断裂伸长注意材料拉伸过程还明显地受环境条件(如温度)和测试条件(如拉伸速率)的影响,硬而强型的硬质聚氯乙烯制品在很慢速率下拉伸也会发生大于100%的断裂伸长率,显现出硬而韧型特点。实际高分子材料的拉伸行为非常复杂,可能不具备上述典型性,或是几种类型的组合。例如有的材料拉伸时存在明显的屈服和“颈缩”,有的则没有;有的材料断裂强度高于屈服强度,有的则屈服强度高于断裂强度等。因此规定标准的实验环境温度和标准拉伸速率是很重要的。注意材料拉伸过程还明显地受环境条件(如温度)和测试条件((二)

影响拉伸行为的外部因素1、温度的影响图7-4聚甲基丙烯酸甲酯的应力-应变曲线随环境温度的变化(常压下)环境温度对高分子材料拉伸行为的影响十分显著。温度升高,分子链段热运动加剧,松弛过程加快,表现出材料模量和强度下降,伸长率变大,应力-应变曲线形状发生很大变化。(二)

影响拉伸行为的外部因素1、温度的影响图7-4聚图7-5断裂强度和屈服强度随温度的变化趋势虚线——高拉伸速率实线——低拉伸速率

材料的拉伸断裂强度和屈服强度随环境温度而发生变化,屈服强度受温度变化的影响更大些。在温度升高过程中,材料发生脆-韧转变。两曲线交点对应的温度称脆-韧转变温度。当环境温度小于时,材料的<,受外力作用时,材料未屈服前先已断裂,呈脆性断裂特征。环境温度高于时,>,受外力作用时,材料先屈服,出现细颈和很大变形后才断裂,呈韧性断裂特征。图7-5断裂强度和屈服强度随温度的变化趋势材料的拉2、拉伸速率的影响

减慢拉伸速率与升高环境温度对材料拉伸行为有相似的影响,这是时-温等效原理在高分子力学行为中的体现。图7-6断裂强度和屈服强度随拉伸速率的变化趋势实线——低环境温度虚线——高环境温度与脆-韧转变温度相似,根据图中两曲线交点,可以定义脆-韧转变(拉伸)速率。拉伸速率高于时,材料呈脆性断裂特征;低于时,呈韧性断裂特征。拉伸速率对材料的断裂强度和屈服强度也有明显影响。2、拉伸速率的影响减慢拉伸速率与升高环境温度对材料拉伸3、环境压力的影响图7-7聚苯乙烯的应力-应变曲线随环境压力的变化(T=31℃)

右图可见,PS在低环境压力(常压)下呈脆性断裂特点,强度与断裂伸长率都很低。随着环境压力升高,材料强度增高,伸长率变大,出现典型屈服现象,材料发生脆-韧转变。研究发现,对许多非晶聚合物,如PS、PMMA等,其脆-韧转变行为还与环境压力有关。3、环境压力的影响图7-7聚苯乙烯的应力-应变曲线右这两种不同的脆-韧转变方式给我们以启发,告诉我们材料增韧改性并非一定要以牺牲强度为代价。设计恰当的方法,就有可能在增韧的同时,保持或提高材料的强度,实现既增韧又增强。塑料的非弹性体增韧改性技术就是由此发展起来的(后详)。比较图7-4和7-7可以发现,升高环境温度和升高环境压力都能使高分子材料发生脆-韧转变。但两种脆-韧转变方式有很大差别。两种脆-韧转变方式升高温度使材料变韧,但其拉伸强度明显下降。升高环境压力则在使材料变韧的同时,强度也得到提高,材料变得强而韧。这两种不同的脆-韧转变方式给我们以启发,告诉我们材料增韧(三)

强迫高弹形变与“冷拉伸”已知环境对高分子材料拉伸行为有显著影响,这儿再重点介绍在特殊环境条件下,高分子材料的两种特殊拉伸行为。1、非晶聚合物的强迫高弹形变

图7-4聚甲基丙烯酸甲酯的应力-应变曲线随环境温度的变化(常压下)研究高聚物拉伸破坏行为时,特别要注意在较低温度下的拉伸、屈服、断裂的情形。对于非晶聚合物,当环境温度处于<<时,虽然材料处于玻璃态,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之几百的大变形(参见图7-4中T=80℃,60℃的情形),这种变形称强迫高弹形变。(三)

强迫高弹形变与“冷拉伸”已知环境对高分子材料拉(2)现象的本质是在高应力下,原来卷曲的分子链段被强迫发生运动、伸展,发生大变形,如同处于高弹态的情形。这种强迫高弹形变在外力撤消后,通过适当升温(>)仍可恢复或部分恢复。(1)这种现象既不同于高弹态下的高弹形变,也不同于粘流态下的粘性流动。这是一种独特的力学行为。(3)强迫高弹形变能够产生,说明提高应力可以促进分子链段在作用力方向上的运动,如同升高温度一样,起到某种“活化”作用。从链段的松弛运动来讲,提高应力降低了链段在作用力方向上的运动活化能,减少了链段运动的松弛时间,使得在玻璃态被冻结的链段能越过势垒而运动。讨论(2)现象的本质是在高应力下,原来卷曲的分子链段被强迫发生运由(7-4)式可见,越大,越小,降低了链段运动活化能。当应力增加致使链段运动松弛时间减小到与外力作用时间同一数量级时,就可能产生强迫高弹变形。(4)研究表明,链段松弛时间与外应力之间有如下关系:

(7-4)式中:是链段运动活化能,是材料常数,是未加应力时链段运动松弛时间。由(7-4)式可见,越大,越小,降2、晶态聚合物的“冷拉伸”图7-8结晶聚合物在不同温度下的应力-应变曲线结晶聚合物也能产生强迫高弹变形,这种形变称“冷拉伸”。结晶聚合物具有与非晶聚合物相似的拉伸应力-应变曲线,见图7-8。图中当环境温度低于熔点时(<),虽然晶区尚未熔融,材料也发生了很大拉伸变形。见图中曲线3、4、5。这种现象称“冷拉伸”。2、晶态聚合物的“冷拉伸”图7-8结晶聚合物在不同温度(1)发生冷拉之前,材料有明显的屈服现象,表现为试样测试区内出现一处或几处“颈缩”。随着冷拉的进行,细颈部分不断发展,形变量不断增大,而应力几乎保持不变,直到整个试样测试区全部变细。再继续拉伸,应力将上升(应变硬化),直至断裂。讨论(2)虽然冷拉伸也属于强迫高弹形变,但两者的微观机理不尽相同。结晶聚合物从远低于玻璃化温度直到熔点附近一个很大温区内都能发生冷拉伸。在微观上,冷拉伸是应力作用使原有的结晶结构破坏,球晶、片晶被拉开分裂成更小的结晶单元,分子链从晶体中被拉出、伸直,沿着拉伸方向排列形成的(参看图7-9)。图7-9球晶拉伸形变时内部晶片变化示意图

(1)发生冷拉之前,材料有明显的屈服现象,表现为试样测试区内图7-10片晶受拉伸形变时内部晶片发生位错、转向、定向排列、拉伸示意图

图7-10片晶受拉伸形变时内部晶片发生位错、转向、定(4)环境温度、拉伸速率、分子量都对冷拉有明显影响。温度过低或拉伸速率过高,分子链松弛运动不充分,会造成应力集中,使材料过早破坏。温度过高或拉伸速率过低,分子链可能发生滑移而流动,造成断裂。分子量较低的聚合物,分子链短,不能够充分拉伸、取向以达到防止材料破坏的程度,也会使材料在屈服点后不久就发生破坏。(3)实现强迫高弹形变和冷拉必须有一定条件。关键有两点,一是材料屈服后应表现出软化效应;二是扩大应变时应表现出材料硬化效应,软、硬恰当,才能实现大变形和冷拉。(4)环境温度、拉伸速率、分子量都对冷拉有明显影响。温度过低ENDofChapt.7Part1ENDofChapt.7Part1高聚物的断裂和力学强度Chapt5TheBreakingandStrength幻灯片PPT本课件PPT仅供大家学习使用学习完请自行删除,谢谢!本课件PPT仅供大家学习使用学习完请自行删除,谢谢!本课件PPT仅供大家学习使用学习完请自行删除,谢谢!本课件PPT仅供大家学习使用学习完请自行删除,谢谢!高聚物的断裂和力学强度Chapt5TheBreakingan理论上,根据完全伸直链晶胞参数求得的聚乙烯最高理论强度达1.9x104MPa,是钢丝的几十倍。实验室中,已经获得高拉伸聚酰胺纤维在液氮中的最高实际强度达2.3x103MPa。在高分子材料诸多应用中,作为结构材料使用是其最常见、最重要的应用。在许多领域,高分子材料已成为金属、木材、陶瓷、玻璃等的代用品。引言之所以如此,除去它具有制造加工便利、质轻、耐化学腐蚀等优点外,还因为它具有较高的力学强度和韧性。理论上,根据完全伸直链晶胞参数求得的聚乙烯最高理论强度达本章一方面介绍描述高分子材料宏观力学强度的物理量和演化规律;另一方面从分子结构特点探讨影响高分子材料力学强度的因素,为研制设计性能更佳的材料提供理论指导。为了评价高分子材料使用价值,扬长避短地利用、控制其强度和破坏规律,进而有目的地改善、提高材料性能,需要掌握高分子材料力学强度变化的宏观规律和微观机理。鉴于高分子材料力学状态的复杂性,以及力学状态与外部环境条件密切相关,高分子材料的力学强度和破坏形式也必然与材料的使用环境和使用条件有关。本章一方面介绍描述高分子材料宏观力学强度的物理量和演化规主要内容及学习线索:一、高分子材料的拉伸应力-应变特性应力-应变曲线及其类型影响拉伸行为的外部因素强迫高弹形变与“冷拉伸”二、高分子材料的断裂和强度宏观断裂方式,脆性断裂和韧性断裂断裂过程,断裂的分子理论高分子材料的强度高分子材料的增强改性三、高分子材料的抗冲击强度和增韧改性抗冲击强度实验影响抗冲击强度的因素高分子材料的增韧改性主要内容及学习线索:一、高分子材料的应力-应变曲线及其类型影一、高分子材料的拉伸应力-应变特性

(一)应力-应变曲线及其类型

图7-1哑铃型标准试样

常用的哑铃型标准试样如图7-1所示,试样中部为测试部分,标距长度为l0,初始截面积为A0。研究材料强度和破坏的重要实验手段是测量材料的拉伸应力-应变特性。将材料制成标准试样,以规定的速度均匀拉伸,测量试样上的应力、应变的变化,直到试样破坏。一、高分子材料的拉伸应力-应变特性(一)应力-应变曲线及其设以一定的力F拉伸试样,使两标距间的长度增至,定义试样中的应力和应变为:注意此处定义的应力σ等于拉力除以试样原始截面积A0,这种应力称工程应力或公称应力,并不等于材料所受的真实应力。同样这儿定义的应变为工程应变,属于应变的Euler度量。(7-1)(7-2)典型高分子材料拉伸应力-应变曲线如图7-2所示。应力应变设以一定的力F拉伸试样,使两标距间的长度增至图7-2典型的拉伸应力-应变曲线

曲线特征:(1)OA段,为符合虎克定律的弹性形变区,应力-应变呈直线关系变化,直线斜率相当于材料弹性模量。图7-2典型的拉伸应力-应变曲线曲线特征:(1)OA(2)越过A点,应力-应变曲线偏离直线,说明材料开始发生塑性形变,极大值Y点称材料的屈服点,其对应的应力、应变分别称屈服应力(或屈服强度)和屈服应变。发生屈服时,试样上某一局部会出现“细颈”现象,材料应力略有下降,发生“屈服软化”。(3)随着应变增加,在很长一个范围内曲线基本平坦,“细颈”区越来越大。直到拉伸应变很大时,材料应力又略有上升(成颈硬化),到达B点发生断裂。与B点对应的应力、应变分别称材料的拉伸强度(或断裂强度)和断裂伸长率,它们是材料发生破坏的极限强度和极限伸长率。(4)曲线下的面积等于(7-3)相当于拉伸试样直至断裂所消耗的能量,单位为J•m-3,称断裂能或断裂功。它是表征材料韧性的一个物理量。

(2)越过A点,应力-应变曲线偏离直线,说明材料开始发生塑性由于高分子材料种类繁多,实际得到的材料应力-应变曲线具有多种形状。归纳起来,可分为五类。图7-3高分子材料应力-应变曲线的类型曲线的类型(1)硬而脆型(2)硬而强型(3)硬而韧型(4)软而韧型(5)软而弱型由于高分子材料种类繁多,实际得到的材料应力-应变曲线具有(3)硬而韧型此类材料弹性模量、屈服应力及断裂强度都很高,断裂伸长率也很大,应力-应变曲线下的面积很大,说明材料韧性好,是优良的工程材料。(1)硬而脆型此类材料弹性模量高(OA段斜率大)而断裂伸长率很小。在很小应变下,材料尚未出现屈服已经断裂,断裂强度较高。在室温或室温之下,聚苯乙烯、聚甲基丙烯酸甲酯、酚醛树脂等表现出硬而脆的拉伸行为。(2)硬而强型此类材料弹性模量高,断裂强度高,断裂伸长率小。通常材料拉伸到屈服点附近就发生破坏(大约为5%)。硬质聚氯乙烯制品属于这种类型。说明(3)硬而韧型此类材料弹性模量、屈服应力及断裂强度都很(5)软而弱型此类材料弹性模量低,断裂强度低,断裂伸长率也不大。一些聚合物软凝胶和干酪状材料具有这种特性。(4)软而韧型此类材料弹性模量和屈服应力较低,断裂伸长率大(20%~1000%),断裂强度可能较高,应力-应变曲线下的面积大。各种橡胶制品和增塑聚氯乙烯具有这种应力-应变特征。硬而韧的材料,在拉伸过程中显示出明显的屈服、冷拉或细颈现象,细颈部分可产生非常大的形变。随着形变的增大,细颈部分向试样两端扩展,直至全部试样测试区都变成细颈。很多工程塑料如聚酰胺、聚碳酸酯及醋酸纤维素、硝酸纤维素等属于这种材料。(5)软而弱型此类材料弹性模量低,断裂强度低,断裂伸长注意材料拉伸过程还明显地受环境条件(如温度)和测试条件(如拉伸速率)的影响,硬而强型的硬质聚氯乙烯制品在很慢速率下拉伸也会发生大于100%的断裂伸长率,显现出硬而韧型特点。实际高分子材料的拉伸行为非常复杂,可能不具备上述典型性,或是几种类型的组合。例如有的材料拉伸时存在明显的屈服和“颈缩”,有的则没有;有的材料断裂强度高于屈服强度,有的则屈服强度高于断裂强度等。因此规定标准的实验环境温度和标准拉伸速率是很重要的。注意材料拉伸过程还明显地受环境条件(如温度)和测试条件((二)

影响拉伸行为的外部因素1、温度的影响图7-4聚甲基丙烯酸甲酯的应力-应变曲线随环境温度的变化(常压下)环境温度对高分子材料拉伸行为的影响十分显著。温度升高,分子链段热运动加剧,松弛过程加快,表现出材料模量和强度下降,伸长率变大,应力-应变曲线形状发生很大变化。(二)

影响拉伸行为的外部因素1、温度的影响图7-4聚图7-5断裂强度和屈服强度随温度的变化趋势虚线——高拉伸速率实线——低拉伸速率

材料的拉伸断裂强度和屈服强度随环境温度而发生变化,屈服强度受温度变化的影响更大些。在温度升高过程中,材料发生脆-韧转变。两曲线交点对应的温度称脆-韧转变温度。当环境温度小于时,材料的<,受外力作用时,材料未屈服前先已断裂,呈脆性断裂特征。环境温度高于时,>,受外力作用时,材料先屈服,出现细颈和很大变形后才断裂,呈韧性断裂特征。图7-5断裂强度和屈服强度随温度的变化趋势材料的拉2、拉伸速率的影响

减慢拉伸速率与升高环境温度对材料拉伸行为有相似的影响,这是时-温等效原理在高分子力学行为中的体现。图7-6断裂强度和屈服强度随拉伸速率的变化趋势实线——低环境温度虚线——高环境温度与脆-韧转变温度相似,根据图中两曲线交点,可以定义脆-韧转变(拉伸)速率。拉伸速率高于时,材料呈脆性断裂特征;低于时,呈韧性断裂特征。拉伸速率对材料的断裂强度和屈服强度也有明显影响。2、拉伸速率的影响减慢拉伸速率与升高环境温度对材料拉伸3、环境压力的影响图7-7聚苯乙烯的应力-应变曲线随环境压力的变化(T=31℃)

右图可见,PS在低环境压力(常压)下呈脆性断裂特点,强度与断裂伸长率都很低。随着环境压力升高,材料强度增高,伸长率变大,出现典型屈服现象,材料发生脆-韧转变。研究发现,对许多非晶聚合物,如PS、PMMA等,其脆-韧转变行为还与环境压力有关。3、环境压力的影响图7-7聚苯乙烯的应力-应变曲线右这两种不同的脆-韧转变方式给我们以启发,告诉我们材料增韧改性并非一定要以牺牲强度为代价。设计恰当的方法,就有可能在增韧的同时,保持或提高材料的强度,实现既增韧又增强。塑料的非弹性体增韧改性技术就是由此发展起来的(后详)。比较图7-4和7-7可以发现,升高环境温度和升高环境压力都能使高分子材料发生脆-韧转变。但两种脆-韧转变方式有很大差别。两种脆-韧转变方式升高温度使材料变韧,但其拉伸强度明显下降。升高环境压力则在使材料变韧的同时,强度也得到提高,材料变得强而韧。这两种不同的脆-韧转变方式给我们以启发,告诉我们材料增韧(三)

强迫高弹形变与“冷拉伸”已知环境对高分子材料拉伸行为有显著影响,这儿再重点介绍在特殊环境条件下,高分子材料的两种特殊拉伸行为。1、非晶聚合物的强迫高弹形变

图7-4聚甲基丙烯酸甲酯的应力-应变曲线随环境温度的变化(常压下)研究高聚物拉伸破坏行为时,特别要注意在较低温度下的拉伸、屈服、断裂的情形。对于非晶聚合物,当环境温度处于<<时,虽然材料处于玻璃态,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之几百的大变形(参见图7-4中T=80℃,60℃的情形),这种变形称强迫高弹形变。(三)

强迫高弹形变与“冷拉伸”已知环境对高分子材料拉(2)现象的本质是在高应力下,原来卷曲的分子链段被强迫发生运动、伸展,发生大变形,如同处于高弹态的情形。这种强迫高弹形变在外力撤消后,通过适当升温(>)仍可恢复或部分恢复。(1)这种现象既不同于高弹态下的高弹形变,也不同于粘流态下的粘性流动。这是一种独特的力学行为。(3)强迫高弹形变能够产生,说明提高应力可以促进分子链段在作用力方向上的运动,如同升高温度一样,起到某种“活化”作用。从链段的松弛运动来讲,提高应力降低了链段在作用力方向上的运动活化能,减少了链段运动的松弛时间,使得在玻璃态被冻结的链段能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论