




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形 B.八边形 C.七边形 D.六边形2.关于的一元二次方程的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定3.如图,已知,添加以下条件,不能判定的是()A. B. C. D.4.在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为()A.6 B.7 C.8 D.95.如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6cm,则△DEB的周长为()A.12cm B.8cm C.6cm D.4cm6.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A. B. C. D.7.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60° B.95°,105° C.30°,60° D.90°,90°8.等腰三角形一个角的度数为50°,则顶角的度数为()A.50° B.80° C.65° D.50°或80°9.如图,在长方形中,厘米,厘米,点在线段上以4厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.当点的运动速度为()厘米/秒时,能够在某一时刻使与全等.A.4 B.6 C.4或 D.4或610.下列交通标志中,是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若是方程的一个解,则______.12.已知,则的值等于___________.13.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.14.,,点在格点上,作出关于轴对称的,并写出点的坐标为________.15.如图,边长为的菱形中,.连结对角线,以为边作第二个菱形,使.连结,再以为边作第三个菱形,使,一按此规律所作的第个菱形的边长是__________.16.已知一直角三角形的两边分别为3和4,则第三边长的平方是__________;17.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.18.如图,已知平分,且,若,则的度数是__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,点的坐标为(-3,1).(1)请在图中作出与关于轴对称的;(2)写出点,,的坐标;(3)求出的面积.20.(6分)如图,某中学校园内有一块长为米,宽为米的长方形地块.学校计划在中间留一块边长为米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含的代数式表示)(2)当时,求绿化的面积.21.(6分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值22.(8分)(1)计算:;(2)作图题:(不写作法,但必须保留作图痕迹)如图,点、是内两点,分别在和上找点和,使四边形周长最小.23.(8分)已知:.求作:,使≌.(要求:不写做法,但保留作图痕迹)24.(8分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)25.(10分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,过点D作DE⊥AB交AB于点E,过C作CF∥BD交ED于F.(1)求证:△BED≌△BCD;(2)若∠A=36°,求∠CFD的度数.26.(10分)先化简,再求值:(1+)÷,其中a是小于3的正整数.
参考答案一、选择题(每小题3分,共30分)1、B【解析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.2、A【分析】利用根的判别式确定一元二次方程根的情况.【详解】解:∴一元二次方程有两个不相等的实数根.故选:A.【点睛】本题考查一元二次方程的根的判别式,解题的关键是掌握利用根的判别式确定方程根的情况的方法.3、C【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【详解】A.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;B.∵BE=CE,∴∠DBC=∠ACB.∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误.故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.4、C【分析】首先根据Rt△ABC的勾股定理得出AB的长度,根据AM=AC得出BM的长度,然后根据BN=BC得出BN的长度,从而根据MN=BN-BM得出答案.【详解】∠ACB=90°,AC=40,CB=9AB===41又AM=AC,BN=BCAM=40,BN=9BM=AB-AM=41-40=1MN=BN-BM=9-1=8故选C考点:勾股定理5、C【解析】∵∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E.∴DE=DC,∴AE=AC=BC,∴BE+DE+BD=BD+DC+BE=BC+BE=AC+BE=AE+BE=AB=6cm.故选C.6、C【解析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得,,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.7、D【分析】根据两个直角互补的定义即可判断.【详解】解:∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°,故选:D.考点:本题考查的是两角互补的定义点评:解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补.8、D【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以分两种情况,①50°为顶角;②50°为底角来讨论.【详解】(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°-2×50°=80°,所以D选项是正确的,故本题选D.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,若没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是解答问题的关键.9、C【分析】设点Q的速度为xcm/s,分两种情形构建方程即可解决问题.【详解】解:设点的速度为,分两种情形讨论:①当,时,与全等,即,解得:,∴,∴;②当,时,与全等,即,,∴,∴.综上所述,满足条件的点的速度为或.故答案选:C.【点睛】本题考查矩形的性质、全等三角形的性质、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.10、D【分析】根据轴对称的概念:一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形就是轴对称图形即可得出答案.【详解】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意;故选:D.【点睛】本题主要考察了轴对称图形,掌握轴对称图形的概念是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】把代入方程,即可解答.【详解】解:把代入方程,得:,解得:a=1.故答案为:1.【点睛】本题考查了二元一次方程的解,解决本题的关键是利用代入法解答即可.12、【分析】先进行配方计算出m,n的值,即可求出的值.【详解】,则,故答案为:.【点睛】本题是对完全平方非负性的考查,熟练掌握配方知识和完全平方非负性是解决本题的关键.13、6【解析】根据三角形的中位线性质可得,14、(4,-3).【分析】根据题意,作出,并写出的坐标即可.【详解】解:如图,作出关于轴对称的,的坐标为(4,-3).【点睛】作关于轴对称的,关键是确定三个点的位置.15、1.【解析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【详解】连接DB交AC于M.∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=()3,按此规律所作的第n个菱形的边长为()n-1,∴第2017个菱形的边长是()2016=1.故答案为:1.【点睛】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.16、25或7【解析】试题解析:①长为3的边是直角边,长为4的边是斜边时:第三边长的平方为:②长为3、4的边都是直角边时:第三边长的平方为:综上,第三边长的平方为:25或7.故答案为25或7.17、25°或40°或10°【解析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.【详解】由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此时∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此时,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,综上所述,∠C度数可以为25°或40°或10°故答案为25°或40°或10°【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.18、25°【分析】根据角平分线的定义得出∠CBE=25°,再根据平行线的性质可得∠C的度数.【详解】∵平分,且,∴∠CBE=∠ABC=25°,∵∴∠CBE=∠BCD∴∠C=25°.故答案为:25°.【点睛】此题主要考查了解平分线的定义以及平行线的性质,求出∠CBE=25°是解题关键.三、解答题(共66分)19、(1)答案见解析;(2),,;(3)9.5【分析】(1)依据轴对称的性质,即可得到的三个顶点,进而得出.(2)根据图像直接找出坐标即可.(3)依据割补法即可得到△ABC的面积.【详解】(1)如图所示:(2)点的坐标为,点的坐标为,点的坐标为.(3)△ABC的面积【点睛】本题考查作图-轴对称变换,解题关键是根据题意作出.20、(1)平方米;(2)54平方米.【分析】(1)绿化的面积=长方形的面积-边长为米的正方形的面积,据此列式计算即可;(2)把a、b的值代入(1)题中的代数式计算即可.【详解】解:(1)平方米;(2)当时,.所以绿化的面积为54平方米.【点睛】本题主要考查了整式乘法的应用,正确列式、熟练掌握运算法则是解题的关键.21、(1)-1;(2)或.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【详解】(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,yC=2a+1;当x=a时,yD=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=,∴a=或a=.22、(1);(2)答案见解析.【分析】(1)首先将小括号里的式子首先将原式的被除数去括号合并后,利用多项式除以单项式法则计算,即可得到结论;(2)根据题意和两点之间线段最短,首先画出点P关于OM的对称点P₁,再画出点Q关于直线ON的对称点Q₁,连接P₁Q₁于OM,ON交于点A,B,,四边形PABQ周长最小.【详解】(1)原式(2)作法:首先画出点P关于OM的对称点P₁,再画出点Q关于直线ON的对称点Q₁,连接P₁Q₁于OM,ON交于点A,B,,四边形PABQ周长最小..【点睛】(1)本题考查了多项式混合运算,做这类题一定要细心;(2)考查的是四边形的周长最短,把它转化成线段最短问题.23、见解析【分析】作射线,在射线上截取,然后分别以、为圆心,以、BC为半径画弧,两弧交于点,连接、.则即为所求.【详解】解:如图,即为所求.【点睛】本题考查了利用全等三角形的判定进行作图,属于常见题型,熟练掌握全等三角形的的判定和基本的尺规作图方法是解题关键.24、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安徽审计职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 职工小家培训课件
- 2025年安徽体育运动职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- alcon培训课件教学课件
- 世界读书日活动策划方案
- 肿瘤病病人的护理查房
- 肺心病护理疑难病例讨论
- 6S基础知识课件
- 2025年云南省楚雄市高三下学期期末“3+1”质量调研生物试题含解析
- 莱芜职业技术学院《基本乐理与应用》2023-2024学年第二学期期末试卷
- 全国第三届职业技能大赛(无人机驾驶(植保)项目)选拔赛理论考试题库(含答案)
- 2024年度微生物菌剂产品试用与反馈协议3篇
- 企业工会会员代表大会与职工代表大会合并召开
- 成人肥胖食养指南(2024年版)
- 危险化学品理化性质培训
- 新科瑞C500系列变频器使用说明书
- 危险化学品目录(2024版)
- 骨科术后下肢肿胀护理
- 快件处理员(高级)职业技能鉴定考试题库(含答案)
- 福建省厦门市双十中学2024-2025学年九年级上学期期中考试英语试题
- 地方导游基础知识电子教案 专题八 学习情境一 青海省课时教案
评论
0/150
提交评论