江苏省江阴市澄西片2022年数学九上期末达标检测模拟试题含解析_第1页
江苏省江阴市澄西片2022年数学九上期末达标检测模拟试题含解析_第2页
江苏省江阴市澄西片2022年数学九上期末达标检测模拟试题含解析_第3页
江苏省江阴市澄西片2022年数学九上期末达标检测模拟试题含解析_第4页
江苏省江阴市澄西片2022年数学九上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C. D.2.下表是二次函数的的部分对应值:············则对于该函数的性质的判断:①该二次函数有最小值;②不等式的解集是或③方程的实数根分别位于和之间;④当时,函数值随的增大而增大;其中正确的是:A.①②③ B.②③ C.①② D.①③④3.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点为60°角与直尺交点,点为光盘与直尺唯一交点,若,则光盘的直径是().A. B. C.6 D.34.已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是()A.3:5 B.9:25 C.5:3 D.25:95.如图,将(其中∠B=33°,∠C=90°)绕点按顺时针方向旋转到的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A. B. C. D.6.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润和月份之间的函数关系式为,则该企业一年中应停产的月份是()A.1月、2月、3月 B.2月、3月、4月 C.1月、2月、12月 D.1月、11月、12月7.抛物线的顶点坐标为()A. B. C. D.8.经过两年时间,我市的污水利用率提高了.设这两年污水利用率的平均增长率是,则列出的关于的一元二次方程为()A. B.C. D.9.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长尺.同时立一根尺的小标杆,它的影长是尺。如图所示,则可求得这根竹竿的长度为()尺A. B. C. D.10.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.写出一个过原点的二次函数表达式,可以为____________.12.关于的方程有一个根,则另一个根________.13.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第_________个图形有94个小圆.14.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.15.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是________.16.化简:__________.17.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)的图象与AB相交于点D.与BC相交于点E,且BD=3,AD=6,△ODE的面积为15,若动点P在x轴上,则PD+PE的最小值是_____.18.若是方程的两个根,则的值为________三、解答题(共66分)19.(10分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.20.(6分)如图,抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0).(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x轴于点B,求△ABC的面积.21.(6分)如图所示,有一电路AB是由如图所示的开关控制,闭合a,b,c,d四个开关中的任意两个开关.(1)请用列表或画树状图的方法,列出所有可能的情况;(2)求出使电路形成通路(即灯泡亮)的概率.22.(8分)如图1,在和中,顶点是它们的公共顶点,,.(特例感悟)(1)当顶点与顶点重合时(如图1),与相交于点,与相交于点,求证:四边形是菱形;(探索论证)(2)如图2,当时,四边形是什么特殊四边形?试证明你的结论;(拓展应用)(3)试探究:当等于多少度时,以点为顶点的四边形是矩形?请给予证明.23.(8分)有三张卡片(形状、大小、质地都相同),正面分别写上整式.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片正面的整式作为分子,第二次抽取的卡片正面的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.24.(8分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于1.25.(10分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.26.(10分)(1)计算:(2)解方程:

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;故选:B.【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.2、A【分析】由表知和,的值相等可以得出该二次函数的对称轴、二次函数的增减性、从而判定出以及函数的最值情况,再结合这些图像性质对不等式的解集和方程解的范围进行判断即可得出答案.【详解】解:∵当时,;当时,;当时,;当时,∴二次函数的对称轴为直线:∴结合表格数据有:当时,随的增大而增大;当时,随的增大而减小∴,即二次函数有最小值;∴①正确,④错误;∵由表格可知,不等式的解集是或∴②正确;∵由表格可知,方程的实数根分别位于和之间∴③正确.故选:A【点睛】本题主要考查二次函数的性质如:由对称性来求出对称轴、由增减性来判断的正负以及最值情况、利用图像特征来判断不等式的解集或方程解的范围等.3、A【分析】设三角板与圆的切点为C,连接,由切线长定理得出、,根据可得答案.【详解】解:设三角板与圆的切点为C,连接OA、OB,如下图所示:由切线长定理知,∴,在中,∴∴光盘的直径为,故选.【点睛】本题主要考查切线的性质,掌握切线长定理和解直角三角形的应用是解题关键.4、C【分析】相似三角形的周长比等于对应的中线的比.【详解】∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:1.故选C.【点睛】本题考查相似三角形的性质,解题的关键是记住相似三角形的性质,灵活运用所学知识解决问题.5、D【解析】根据直角三角形两锐角互余求出,然后求出,再根据旋转的性质对应边的夹角即为旋转角.【详解】解:,,,点、、在同一条直线上,,旋转角等于.故选:D.【点睛】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.6、C【分析】根据解析式,求出函数值y等于2时对应的月份,依据开口方向以及增减性,再求出y小于2时的月份即可解答.【详解】解:∵

∴当y=2时,n=2或者n=1.

又∵抛物线的图象开口向下,

∴1月时,y<2;2月和1月时,y=2.

∴该企业一年中应停产的月份是1月、2月、1月.

故选:C.【点睛】本题考查二次函数的应用.能将二次函数由一般式化为顶点式并理解二次函数的性质是解决此题的关键.7、A【分析】根据顶点式的特点可直接写出顶点坐标.【详解】因为y=(x-1)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,3).故选A.【点睛】本题考查了二次函数的性质:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h,此题考查了学生的应用能力.8、A【分析】设这两年污水利用率的平均增长率是,原有污水利用率为1,利用原有污水利用率(1+平均每年污水利用率的增长率=污水利用率,列方程即可.【详解】解:设这两年污水利用率的平均增长率是,由题意得出:故答案为:A.【点睛】本题考查的知识点是用一元二次方程解决实际问题,解题的关键是根据题目找出等量关系式,再列方程.9、B【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵太阳光为平行光,∴,解得x=45(尺)..故选:B.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.10、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;

B、是轴对称图形,不是中心对称图形,故此选项错误;

C、不是轴对称图形,不是中心对称图形,故此选项错误;

D、不是轴对称图形,是中心对称图形,故此选项错误;

故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、y=1x1【分析】抛物线过原点,因此常数项为0,可据此写出符合条件的二次函数的表达式.【详解】解:设抛物线的解析式为y=ax1+bx+c(a≠0);∵抛物线过原点(0,0),

∴c=0;

当a=1,b=0时,y=1x1.故答案是:y=1x1.(答案不唯一)【点睛】主要考查了二次函数图象上的点与二次函数解析式的关系.要求掌握二次函数的性质,并会利用性质得出系数之间的数量关系.12、2【分析】由根与系数的关系,根据两根之和为计算即可.【详解】∵关于的方程有一个根,

解得:;

故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,熟记根与系数的关系的结构是解题的关键.13、9.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第1个图形中小圆的个数为21;则知第n个图形中小圆的个数为n(n+1)+1.依此列出方程即可求得答案.【详解】解:设第n个图形有91个小圆,依题意有n2+n+1=91即n2+n=90(n+10)(n﹣9)=0解得n1=9,n2=﹣10(不合题意舍去).故第9个图形有91个小圆.故答案为:9【点睛】本题考查(1)、一元二次方程的应用;(2)、规律型:图形的变化类.14、(3,﹣10)【分析】首先根据坐标求出正方形的边长为6,进而得到D点坐标,然后根据每旋转4次一个循环,可知第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,即可得出此时D点坐标.【详解】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时D点与(﹣3,10)关于原点对称,∴此时点D的坐标为(3,﹣10).故答案为:(3,﹣10).【点睛】本题考查坐标与图形,根据坐标求出D点坐标,并根据旋转特点找出规律是解题的关键.15、.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.故答案为.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.16、0【分析】根据cos(90°-A)=sinA,以及特殊角的三角函数值,进行化简,即可.【详解】原式====0.故答案是:0【点睛】本题主要考查三角函数常用公式以及特殊角三角函数值,掌握三角函数的常用公式,是解题的关键.17、.【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,求得B和E的坐标,然后E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小,利用勾股定理即可求得E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小.【详解】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,∵BD=3,AD=6,∴AB=9,设B点的坐标为(9,b),∴D(6,b),∵D、E在反比例函数的图象上,∴6b=k,∴E(9,b),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=9b﹣k﹣k﹣•3•(b﹣b)=15,∴9b﹣6b﹣b=15,解得:b=6,∴D(6,6),E(9,4),作E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小,∵AB=9,BE′=6+4=10,∴DE′==,故答案为.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式,本题属于中等题型.18、1【分析】先由根与系数的关系得出,然后代入即可求解.【详解】∵是方程的两个根∴原式=故答案为:1.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.三、解答题(共66分)19、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【分析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可.【详解】解:(1)把点A(﹣1,6)代入反比例函数(m≠0)得:m=﹣1×6=﹣6,∴.将B(a,﹣2)代入得:,a=1,∴B(1,﹣2),将A(﹣1,6),B(1,﹣2)代入一次函数y1=kx+b得:,∴,∴;(2)由函数图象可得:x<﹣1或0<x<1.【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.20、(1)y1=﹣(x﹣1)2+4;(2).【分析】(1)解答时先根据已知条件求出二次函数的表达式,(2)根据一次函数与抛物线相交的关系算出交点坐标,就可以算出三角形的面积【详解】(1)∵抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0),∴0=a(﹣1﹣1)2+4,得a=﹣1,∴y1=﹣(x﹣1)2+4,即该抛物线所表示的二次函数的表达式是y1=﹣(x﹣1)2+4;(2)由得或∵一次函数y2=x+1的图象与抛物线相交于A,C两点,点A(﹣1,0),∴点C的坐标为(2,3),∵过点C作CB垂直于x轴于点B,∴点B的坐标为(2,0),∵点A(﹣1,0),点C(2,3),∴AB=2﹣(﹣1)=3,BC=3,∴△ABC的面积是==【点睛】此题重点考察学生对二次函数的理解,一次函数与二次函数的性质是解题的关键21、(1)列表见解析;(2)使电路形成通路(即灯泡亮)的概率是【分析】(1)按题意列表即可,注意表格中对角线(2)由列表可知共有12种可能,其中有8种可形成通路,由此可得概率【详解】(1)列表法abcdaabacadbbabcbdccacbcdddadbdc(2)使电路形成通路(即灯泡亮)的概率是P=22、(1)见解析;(2)

当∠GBC=30°时,四边形GCFD是正方形.证明见解析;(3)当∠GBC=120°时,以点,,,为顶点的四边形CGFD是矩形.证明见解析.【分析】(1)先证明四边形是平行四边形,再通过证明得出,从而证明四边形是菱形;(2)证法一:如图,连接交于,在上取一点,使得,通过证明,,,从而证明当∠GBC=30°时,四边形GCFD是正方形;证法二:如图,过点G作GH⊥BC于H,通过证明OD=OC=OG=OF,GF=CD,从而证明当∠GBC=30°时,四边形GCFD是正方形;(3)

当∠GBC=120°时,点E与点A重合,通过证明,CD=GF,,从而证明四边形是矩形.【详解】(1),,四边形是平行四边形,在和中,,,四边形是菱形.(2)

当∠GBC=30°时,四边形GCFD是正方形.证法一:如图,连接交于,在上取一点,使得,,,,,,,.,,,,,,,,设,则,,

在Rt△BGK中,,解得,

,,,,,,,四边形是平行四边形,,四边形是矩形,,四边形是正方形.证法二:如图∵,,.又,,,.过点G作GH⊥BC于H,在Rt△BHG中,∵,∴GH=BG=+1,BH=GH=3+,∴HC=BC﹣BH=2+2-(3+)=-1,∴GC=,∴OG=OC===2,∴OD=OF=4-2=2,∴OD=OC=OG=OF,四边形是矩形,∵GF=CD,四边形是正方形.(3)当∠GBC=120°时,以点,,,为顶点的四边形CGFD是矩形.

当∠GBC=120°时,点E与点A重合.,∴,.

∵四边形ABCD和四边形GBEF是平行四边形,∴,,AB=CD,AB=GF,∴,CD=GF,

四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论