版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.2.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20° B.30° C.40° D.70°3.抛物线先向下平移1个单位,再向左平移2个单位,所得的抛物线是()A.. B.C. D.4.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.5.在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B(0,3),对称轴是直线x=-1.则下列结论正确的是()A.ac>0 B.b2-4ac=0 C.a-b+c<0 D.当-3<x<1时,y>06.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b7.下列事件是随机事件的是()A.打开电视,正在播放新闻 B.氢气在氧气中燃烧生成水C.离离原上草,一岁一枯荣 D.钝角三角形的内角和大于180°8.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为()A.16 B.20 C.24 D.289.下列二次函数中,如果函数图像的对称轴是轴,那么这个函数是()A. B. C. D.10.《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是()A.步 B.步 C.步 D.步11.“割圆术”是我国古代的一位伟大的数学家刘徽首创的,该割圆术,就是通过不断倍增圆内接正多边形的边数来求出圆周率的一种方法,某同学在学习“割圆术”的过程中,画了一个如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为().A.1 B.3 C.3.1 D.3.1412.下列事件中为必然事件的是()A.抛一枚硬币,正面向上 B.打开电视,正在播放广告C.购买一张彩票,中奖 D.从三个黑球中摸出一个是黑球二、填空题(每题4分,共24分)13.分解因式:a2b﹣b3=.14.如图,扇形的圆心角是为,四边形是边长为的正方形,点分别在在弧上,那么图中阴影部分的面积为__________.(结果保留)15.已知,则=__________.16.某圆锥的底面半径是2,母线长是6,则该圆锥的侧面积等于________.17.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________
条鱼.18.已知二次函数的自变量与函数的部分对应值列表如下:…-3-2-10……0-3-4-3…则关于的方程的解是______.三、解答题(共78分)19.(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.20.(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”.如图1,图2,图3中,是的中线,,垂足为点,像这样的三角形均为“中垂三角形.设.(1)如图1,当时,则_________,__________;(2)如图2,当时,则_________,__________;归纳证明(3)请观察(1)(2)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(4)如图4,在中,分别是的中点,且.若,,求的长.21.(8分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.22.(10分)如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(0,).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.23.(10分)如图,已知三个顶点的坐标分别为,,(1)请在网格中,画出线段关于原点对称的线段;(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;(3)若另有一点,连接,则.24.(10分)某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?25.(12分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,弦PB与CD交于点F,且FC=FB.(1)求证:PD∥CB;(2)若AB=26,EB=8,求CD的长度.26.如图,在平面直角坐标系中,直线与轴交于点,与轴交于点且与反比例函数在第一象限的图象交于点轴于点.根据函数图象,直接写出当反比例函数的函数值时,自变量的取值范围;动点在轴上,轴交反比例函数的图象于点.若.求点的坐标.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可.【详解】解:A、不符合中心对称图形的定义,因此不是中心对称图形,故A选项错误;B、不符合中心对称图形的定义,因此不是中心对称图形,故B选项错误;C、不符合中心对称图形的定义,因此不是中心对称图形,故C选项错误;D、符合中心对称图形的定义,因此是中心对称图形,故D选项正确;故答案选D.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念是解题关键.2、A【分析】根据邻补角的性质,求出∠BOC的值,再根据圆周角与圆心角的关系求出∠D的度数即可.【详解】∵∠AOC=140°,∴∠BOC=180°-∠AOC=40°,∵∠BOC与∠BDC都对,∴∠D=∠BOC=20°,故选A.【点睛】本题考查了圆周角定理,知道同弧所对的圆周角是圆心角的一半是解题的关键.3、A【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将抛物线y=3x2先向向下平移1个单位可得到抛物线y=3x2-1;
由“左加右减”的原则可知,将抛物线y=3x2-1先向左平移2个单位可得到抛物线.
故选A.【点睛】本题考查二次函数图象与几何变换,解题的关键是掌握函数图象平移的法则“左加右减,上加下减”的原则.4、C【分析】连接CD,由直径所对的圆周角是直角,可得CD是直径;由同弧所对的圆周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的长可求出sin∠ODC.【详解】设⊙A交x轴于另一点D,连接CD,∵∠COD=90°,∴CD为直径,∵直径为10,∴CD=10,∵点C(0,5)和点O(0,0),∴OC=5,∴sin∠ODC==,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=.故选C.【点睛】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.5、D【分析】根据二次函数图象和性质逐项判断即可.【详解】解:∵抛物线y=ax2+bx+c的图象开口向下,与y轴交于点B(0,3),∴a<0,c>0,∴ac<0,故A选项错误;∵抛物线y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故B选项错误;∵对称轴是直线x=-1,∴当x=-1时,y>0,即a-b+c>0,故C选项错误;∵抛物线y=ax2+bx+c对称轴是直线x=-1,与x轴交于A(1,0),∴另一个交点为(-3,0),∴当-3<x<1时,y>0,故D选项正确.故选:D.【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的图象和性质是解题的关键.6、D【分析】对于反比例函数(k≠0)而言,当k>0时,作为该函数图象的双曲线的两支应该在第一和第三象限内.由点A与点B的横坐标可知,点A与点B应该在第一象限内,然后根据反比例函数增减性分析问题.【详解】解:∵点A的坐标为(1,a),点B的坐标为(3,b),∴与点A对应的自变量x值为1,与点B对应的自变量x值为3,∵当k>0时,在第一象限内y随x的增大而减小,又∵1<3,即点A对应的x值小于点B对应的x值,∴点A对应的y值大于点B对应的y值,即a>b故选D【点睛】本题考查反比例函数的图像性质,利用数形结合思想解题是关键.7、A【分析】根据随机事件的意义,事件发生的可能性大小判断即可.【详解】解:A、打开电视,正在播放新闻,是随机事件;B、氢气在氧气中燃烧生成水,是必然事件;C、离离原上草,一岁一枯荣,是必然事件;D、钝角三角形的内角和大于180°,是不可能事件;故选:A.【点睛】本题考查可随机事件的意义,正确理解随机事件的意义是解决本题的关键.8、B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】根据题意知=20%,解得a=20,经检验:a=20是原分式方程的解,故选B.【点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据红球的频率得到相应的等量关系.9、C【分析】由已知可知对称轴为x=0,从而确定函数解析式y=ax2+bx+c中,b=0,由选项入手即可.【详解】二次函数的对称轴为y轴,
则函数对称轴为x=0,
即函数解析式y=ax2+bx+c中,b=0,
故选:C.【点睛】此题考查二次函数的性质,熟练掌握二次函数的图象及性质是解题的关键.10、A【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径,进而得出直径.【详解】根据勾股定理,得斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为A.【点睛】此题主要考查了三角形的内切圆与内心,熟练掌握,即可解题.11、B【分析】先求出,进而得出,根据这个圆的内接正十二边形的面积为进行求解.【详解】∵是圆的内接正十二边形,∴,∵,∴,∴这个圆的内接正十二边形的面积为,故选B.【点睛】本题考查正十二边形的面积计算,先求出是解题的关键.12、D【分析】根据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】A,B,C选项中,都是可能发生也可能不发生,是随机事件,不符合题意;D是必然事件,符合题意.故选:D.【点睛】本题考查必然事件的定义,熟练掌握定义是关键.二、填空题(每题4分,共24分)13、b(a+b)(a﹣b)【分析】先提取公因式,再利用平方差公式进行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【详解】解:a2b﹣b3,=b(a2﹣b2)=b(a+b)(a﹣b).故答案为b(a+b)(a﹣b).14、【分析】由正方形的性质求出扇形的半径,求得扇形的面积,再减去正方形OEDC的面积即可解答,【详解】解:∵正方形OCDE的边长为1,∴OD=∵扇形的圆心角是为∴扇形的面积为∴阴影部分的面积为-1故答案为-1.【点睛】本题考查了扇形的面积计算,确定扇形的半径并求扇形的面积是解答本题的关键.15、【分析】根据比例的性质,化简求值即可.【详解】故答案为:.【点睛】本题主要考察比例的性质,解题关键是根据比例的性质化简求值.16、【分析】根据圆锥的侧面积公式即可得.【详解】圆锥的侧面积公式:,其中为底面半径,为圆锥母线则该圆锥的侧面积为故答案为:.【点睛】本题考查了圆锥的侧面积公式,熟记公式是解题关键.17、1000【解析】试题考查知识点:统计初步知识抽样调查思路分析:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的十分之一.具体解答过程:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的比例为:∵先从鱼塘中捞出后作完记号又放回水中的鱼有100条∴该鱼塘里总条数约为:(条)试题点评:18、,【分析】首先根据与函数的部分对应值求出二次函数解析式,然后即可得出一元二次方程的解.【详解】将(0,-3)(-1,-4)(-3,0)代入二次函数,得解得∴二次函数解析式为∴方程为∴方程的解为,故答案为,.【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.三、解答题(共78分)19、(1);(2)游戏规则对甲、乙双方不公平.【解析】(1)根据题意列出图表,得出数字之和共有12种结果,其中“和是3的倍数”的结果有4种,再根据概率公式求出甲获胜的概率.(2)根据图表(1)得出)“和是4的倍数”的结果有3种,根据概率公式求出乙的概率,再与甲的概率进行比较,得出游戏是否公平.【详解】解:(1)列表如下:∵数字之和共有12种结果,其中“和是3的倍数”的结果有4种,∴.(2)∵“和是4的倍数”的结果有3种,∴.∵,即P(甲获胜)≠P(乙获胜),∴这个游戏规则对甲、乙双方不公平.20、(1),;(2),;(3),证明见解析;(4)【分析】(1)根据三角形的中位线得出;,进而得到计算即可得出答案;(2)连接EF,中位线的性质以及求出AP、BP、EP和FP的长度再根据勾股定理求出AE和BF的长度即可得出答案;(3)连接EF,根据中位线的性质得出,根据勾股定理求出AE与AP和EP的关系以及BF与BP和FP的关系,即可得出答案;(4)取的中点,连接,结合题目求出四边形是平行四边形得出AP=FP即可得到是“中垂三角形”,根据第三问得出的结论代入,即可得出答案(连接,交于点,证明求得是的中线,进而得出是“中垂三角形”,再结合第三问得出的结论计算即可得出答案).【详解】解:(1)∵是的中线,∴是的中位线,∴,且,易得.∵,∴,∴.由勾股定理,得,∴.(2)如图2,连结.∵是的中线,∴是的中位线,∴,且,易得..∵,∴,∴.由勾股定理,得,∴.(3)之间的关系是.证明如下:如图3,连结.∵是的中线,∴是的中位线.∴,且,易得.在和中,∵,,∴.∴.∴,即.(4)解法1:设的交点为.如图4,取的中点,连接.∵分别是的中点,是的中点,∴.又∵,∴.∵四边形是平行四边形,∴,∴,∴四边形是平行四边形,∴,∴是“中垂三角形”,∴,即,解得.(另:连接,交于点,易得是“中垂三角形”,解法类似于解法1,如图5)解法2:如图6,连接,延长交的延长线于点.在中,∵分别是的中点,∴.∵,∴.又∵四边形为平行四边形,∴,易得,∴,∴,∴是的中线,∴是“中垂三角形”,∴.∵,∴.∴,解得.∵是的中位线,∴.【点睛】本题考查的是相似三角形的判定与性质、勾股定理以及全等三角形的判定与性质,注意类比思想在本题中的应用,第四问方法一得出是解决本题的关键.21、(1)证明见解析;(2)证明见解析;(3)tan∠ACD=2﹣.【分析】(1)根据BM为切线,BC平分∠ABM,求得∠ABC的度数,再由直径所对的圆周角为直角,即可求证;(2)根据三角形相似的判定定理证明三角形相似,再由相似三角形对应边成比例,即可求证;(3)由图得到∠ACD=∠ABD,根据各个角之间的关系求出∠AFD的度数,用AD表达出其它边的边长,再代入正切公式即可求得.【详解】(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DEDC∴OA2=DEDC=EODC(3)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF=AD∴BD=DF+BF=AD+2AD∴tan∠ACD=tan∠ABD===2﹣【点睛】本题考查圆的切线、角平分线的性质,相似三角形的性质以及三角函数中正切的计算问题,属综合中档题.22、(1);(2)①(2,);②点E(2,).【分析】(1)抛物线的表达式为:y=a(x+1)(x﹣5)=a(x2﹣4x﹣5),故﹣5a=,解得:a=﹣,即可求解;(2)①点A关于函数对称轴的对称点为点B,连接CB交函数对称轴于点E,则点E为所求,即可求解;②t=AE+DE,t=AE+DE=AE+EH,当A、E、H共线时,t最小,即可求解.【详解】(1)抛物线的表达式为:y=a(x+1)(x﹣5)=a(x2﹣4x﹣5),故﹣5a=,解得:a=﹣,故抛物线的表达式为:;(2)①函数的对称轴为:x=2,点A关于函数对称轴的对称点为点B,连接CB交函数对称轴于点E,则点E为所求,由点B、C的坐标得,BC的表达式为:y=﹣x+,当x=2时,y=,故答案为:(2,);②t=AE+DE,过点D作直线DH,使∠EDH=30°,作HE⊥DH于点H,则HE=DE,t=AE+DE=AE+EH,当A、E、H共线时,t最小,则直线A(E)H的倾斜角为:30°,直线AH的表达式为:y=(x+1)当x=2时,y=,故点E(2,).【点睛】本题考查了二次函数的综合问题,掌握二次函数的性质以及解析式、对称的性质是解题的关键.23、(1)见解析;(2)见解析,;(3)1.【分析】(1)分别作出点B、C关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB的中点D,作直线CD,根据点D的位置写出坐标即可;(3)连接BP,证明△BPC是等腰直角三角形,继而根据正切的定义进行求解即可.【详解】(1)如图所示,线段B1C1即为所求作的;(2)如图所示,D(-1,-4);(3)连接BP,则有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2=PC2,∴△BPC是等腰直角三角形,∠PBC=90°,∴∠BCP=45°,∴tan∠BCP=1,故答案为1.【点睛】本题考查了作图——中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.24、(1)y=100x(的整数)y=x(的整数);(2)购买22件时,该网站获利最多,最多为1408元.【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当的整数时,y与x的关系式为y=100x;当的整数时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年第三季度CF40宏观政策报告 -宏观部分:逆周期政策药方配齐进度和力度成为关键
- 2024届山西省长治市高三下学期周练试卷(一)数学试题
- 五年级下册草原教育课件
- 5年中考3年模拟试卷初中生物八年级下册第一节植物的生殖
- 学校校车接送管理制度(12篇)
- 高中语文《社会历史的决定性基础》练习(含答案)
- 滤波器出厂试验报告
- 苏少版小学六年级下册美术教案 全册
- 中国绿化苗木行业现状调研与前景战略建议报告2024
- 家的课件教学课件
- 工业大学安全施工组织设计
- 城市轨道交通列车自动控制系统维护 课件 1.1 列车自动控制系统初识
- 湘美版 八年级上册 美术 第3课 寄情山水 教案
- 洗车场加盟协议
- 2024-2030年沉香木项目融资商业计划书
- 2024年新华师大版七年级上册数学教学课件 第1章 有理数 1.13 近似数
- 2024-2030年中国天然乳胶床垫行业市场发展趋势与前景展望战略分析报告
- 2024年硕士研究生招生考试思想政治理论考试大纲
- 家居保洁课件
- 2023-2024学年北京市西城外国语学校七年级(上)期中数学试卷【含解析】
- 知识图谱智慧树知到答案2024年浙江大学
评论
0/150
提交评论