




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
化工原理
PrinciplesofChemicalIndustry化工原理FlowpastimmersedbodiesFlowpastimmersedbodiesThediscussioninthisChapteris
concernedabout:1.thelawsoffluidflow;2.factorsthatcontrolchangesofpressureandvelocityoffluidsflowingpastsolidboundariesandwasespeciallyconcernedwithflowthroughclosedpipesandchannels.Emphasisduringthediscussionwasplacedprimarilyonthefluid.ThediscussioninthisChapterThesituationwherethesolidisimmersedin,andsurroundedbyfluidisthesubjectofthischapter.ThesituationwherethesolidDragandDragcoefficientsDrag
——TheforceinthedirectionofflowexertedbythefluidonthesolidDragcoefficients
——Ananalogousfactorusedforimmersedsolids(likelocalfrictionalcoef.)DragandDragcoefficientsDragDragWhenthewallofthebodyisparallelwiththedirectionofflow,showninFig.3-10a,dragforceisthewallshear.DragWhenthewallofthebodFig.7-1showsthepressureandshearforcesactingonanelementofareadAinclinedatanangleof90°-αtothedirectionofflow.DirectionOfflowαPcosαdA(formdrag)Forecefrompressure=pdATwsinαdA(walldrag)TwdAFig.7-1showsthepressureandThedragfromwallshearisτw•sinα•dA(walldrag),and
thatfrompressureisp•cosα•dA(formdrag).Theabovedragsareinthedirectionofflow.Thetotaldragonthebodyisthesumoftheintegralsofthesequantitieseachevaluatedovertheentiresurfaceofthebodyincontactwiththefluid.ThedragfromwallshearisτwThetotalintegrateddragfromwallsheariscalledwalldrag.Thetotalintegrateddragfrompressureiscalledformdrag.化工原理英文教材流体输送阻力系数Flow-past-immersed-bodies课件Inpotentialflow(idealfluids)thereisnowalldrag.Also,thepressuredraginthedirectionofflowisbalancedbyanequalforceintheoppositedirection,andintegraloftheformdragiszero.Sothereisnonetdraginpotentialflow.Inpotentialflow(idealfluidDragcoefficientsIfFDisthetotaldrag,theaveragedragperunitprojectedareaisFD/A,justasfrictionfactorf
isdefinedastheratioofτwtotheproductofthedensityofthefluidandthevelocityhead,sothedragcoefficientdenotedbyζ(CD),isdefinedastheratioofFD/Atothissameproduct,or(7-1)DragcoefficientsIfFDisthTheequation(7-1)isthesameastheequation(5-71)LetΔp=FD/A,andsubstitutingintheaboveequationTheequation(7-1)isthesameForparticleshavingshapesotherthanspherical,itisnecessarytospecifythesizeandgeometricformofthebodyanditsorientationwithrespecttothedirectionofflowofthefluid.Forparticleshavingshapesotshapefactors:Onemajordimensionischosenasthecharacteristiclength,andotherimportantdimensionsaregivenasratiostothechosenone.shapefactors:
Fromdimensionalanalysis,thedragcoefficientofasmoothsolidinanincompressiblefluiddependsuponaReynoldsnumberandthenecessaryshapefactors.(7-2)Fromdimensionalanalysis,tDragcoefficientsoftypicalshapes
InFig,curvesofCD(ζ)vs.Reareshownforspheres,longcylinders,anddisks.Theaxisofthecylinderandthefaceofthediskareperpendiculartothedirectionofflow.DragcoefficientsoftypicalsForlowReynoldsnumbersthedragforceforasphereconformstoatheoreticalequationcalledStokes´law,whichmaybewritten(7-3)FromEq.(7-3),thedragcoefficientpredictedbyStokes´lawis,usingEq(7-1)(7-4)Intheory,Stokes’lawisvalidonlywhenReisconsiderablylessthan1.ForlowReynoldsnumbersthed
Thelawisespeciallyvaluableforcalculatingtheresistanceofsmallparticles,suchasdustsorfogs,movingthroughgasesorliquidsoflowviscosity,orforthemotionoflargerparticlesthroughhighlyviscousliquids.ThelawisespeciallyvaluabMechanicsofparticlemotionTheforceactingontheparticlemaycomefromadensitydifferencebetweentheparticleandthefluid,oritmaybetheresultofelectricormagneticfields.MechanicsofparticlemotionThreeforcesactonaparticlemovingthroughafluid:
Theexternalforce,gravitationalorcentrifugal;Thebuoyantforce,whichactsparallelwiththeexternalforcebutintheoppositedirection;Thedragforce,whichappearswheneverthereisrelativemotionbetweentheparticleandthefluid.ThreeforcesactonaparticleEquationforone-dimensionalmotionofparticlethroughfluidConsideraparticleofvolumevf,densityρfmovingthroughafluid.Threeforcesactingonaparticleare:(1)externalforce:Fe=Vf
ρf
ae(2)buoyantforce:Fb=Vfρae(3)dragforce:FeFbFDEquationforone-dimensionalmThentheresultantforceontheparticleis
Fe-Fb–Fd,Theaccelerationoftheparticleisdu/dt,
(7-25)substitutingtheforcestoEq(7-27)gives(7-30)ThentheresultantforceonthTerminalvelocityThedragalwaysincreaseswithvelocity,theaccelerationdu/dtofaparticledecreaseswithtimeandapproachestozero.Theparticlequicklyreachesaconstantvelocity,whichisthemaximumattainableundercircumstances,andwhichiscalledtheterminalvelocityut.TerminalvelocityThedragalwa(7-31)Theterminalvelocityisfoundbytakingdu/dt=0,thenfromEq(7-31)(7-32)化工原理英文教材流体输送阻力系数Flow-past-immersed-bodies课件Inthegravitationalsetting,ae=g(7-33)
motioninacentrifugalfield,theaccelerationfromcentrifugalforcefromcirclemotionis
ae=rω2wherer=radiusofpathofparticle
ω=angularvelocity,radians/secInthegravitationalsetting,theterminalvelocityis(7-34)theterminalvelocityisdragcoefficientThequantitativeuseofEq(7-33)and(7-34)requiresthatnumericalvaluesisavailableforthedragcoefficientζ.dragcoefficientThequantitThedragcurveshowninFig.7-6applies,however,onlyunderrestrictedconditions.Theparticlemustbeasolidsphere,itmustbefarfromotherparticlesandfromthevesselwallsothattheflowpatternaroundtheparticleisnotdistorted,andtheparticlemustbemovingatitsterminalvelocitywithrespecttothefluid.ThedragcurveshowninFig.7-Whentheparticleatthesufficientdistancefromtheboundariesofthecontainerandfromotherparticles,sothatitsfallisnotaffectedbythem,theprocessiscalledfreesettling.Ifthemotionofparticleisimpededbyotherparticles,whichhappenwhentheparticlesareneareachothereventhoughtheymaynotactuallybecolliding,theprocessis
calledhinderedsettling.WhentheparticleatthesuffiIftheparticlesareverysmall,Brownianmovementappears.Thiseffectbecomesappreciableataparticlesizeofabout2-3µmandpredominatesovertheforceofgravitywithaparticlesizeof0.1orless.IftheparticlesareverysmTherandommovementoftheparticletendstosuppresstheeffectoftheforceofgravity,sosettlingdoesnotoccur.ApplicationofcentrifugalforcereducestherelativeeffectofBrownianmovement.TherandommovementoftheparMovementofsphericalparticlesIftheparticlesarespheresofdiameterdp
(7-35)And
(7-36)MovementofsphericalparticleSubstitutionofVpandApfromEq(7-35)and(7-36)intoEq(7-33)and(7-34)gives(7-37)And(7-37a)SubstitutionofVpandApfromTheterminalvelocitiesatthedifferentReynoldsnumber
Intheory,stokes’lawisvalidonlywhenReisconsiderablylessthanunity.
Eq.(7-4)maybeusedwithsmallerrorforallReynoldsnumberslessthan1.TheterminalvelocitiesattheForgravitysettlingofaspheres,atlowReynoldsnumbers,thedragcoefficientvariesinverselywithRe.(7-38)andsubstitutingEq(7-38)intoEq(7-37),gives(7-40)ForgravitysettlingofasEquation(7-40)isknownasStokes´law,andappliesforparticleReynoldsnumberslessthan1.0.SubstitutingEq(7-38)intoEq(7-37a),gives(7-41)Equation(7-41)canbeusedtopredictthevelocityofasmallsphereinacentrifugalfield.Equation(7-40)isknownasFor1000<Re<200000thedragcoefficientisapproximatelyconstantattheequationsareζ=0.44For1000<Re<2000001000<Re<200000thedragcoefficientisapproximatelyConstantanditisζ=0.44(7-41)theterminalvelocityisasfollows
(7-43)1000<Re<200000CriterionforsettlingregimeToidentifytherangeinwhichthemotionoftheparticlelies,thevelocitytermiseliminatedfromReynoldsnumberbysubstitutingutfromEq.(7-40)togive,fortheStokes’-lawrange
(7-44)CriterionforsettlingregimeTRe<1.0.ToprovideaconvenientcriterionK,Let(7-45)Re<1.0.ToprovideaconvenienThen,fromEq(7-44),Re=K3/18.SettingRe=1.0andsolvinggivesK=2.6.Ifthesizeoftheparticleisknown,KcanbecalculatedfromEq(7-45).IfKsocalculatedislessthan2.6,Stokes’lawapplies.Then,fromEq(7-44),Re=K3/18.SubstitutionforutfromEq.(7-45)showsthatfortheNewton’slawrangeRe=1.75K1.5.Settingthisequalto1000andsolvinggivesK=68.9.ThusifKisgreaterthan68.9,Newton’slawapplies.SubstitutionforutfromEq.(7IntherangebetweenStockes’lawandNewton’slaw(2.6<K<68.9),theterminalvelocityiscalculatedfromEq(7-39)usingavalueofζfoundbytrialfromFig.7-6化工原理英文教材流体输送阻力系数Flow-past-immersed-bodies课件ExampleAliquiddropwithp=1000kg/m3,dp=0.0001m,settlesfreelyinastaticairwith=0.00012kg/m.s,=1.22kg/m3.Ifthesettleobeysstokeslaw,whatistheterminalvelocityut,inm/s?Ifairtempincreases,whathappenstothesettlingvelocity(forlaminarflowRe1)ExampleAliquiddropwithp=化工原理
PrinciplesofChemicalIndustry化工原理FlowpastimmersedbodiesFlowpastimmersedbodiesThediscussioninthisChapteris
concernedabout:1.thelawsoffluidflow;2.factorsthatcontrolchangesofpressureandvelocityoffluidsflowingpastsolidboundariesandwasespeciallyconcernedwithflowthroughclosedpipesandchannels.Emphasisduringthediscussionwasplacedprimarilyonthefluid.ThediscussioninthisChapterThesituationwherethesolidisimmersedin,andsurroundedbyfluidisthesubjectofthischapter.ThesituationwherethesolidDragandDragcoefficientsDrag
——TheforceinthedirectionofflowexertedbythefluidonthesolidDragcoefficients
——Ananalogousfactorusedforimmersedsolids(likelocalfrictionalcoef.)DragandDragcoefficientsDragDragWhenthewallofthebodyisparallelwiththedirectionofflow,showninFig.3-10a,dragforceisthewallshear.DragWhenthewallofthebodFig.7-1showsthepressureandshearforcesactingonanelementofareadAinclinedatanangleof90°-αtothedirectionofflow.DirectionOfflowαPcosαdA(formdrag)Forecefrompressure=pdATwsinαdA(walldrag)TwdAFig.7-1showsthepressureandThedragfromwallshearisτw•sinα•dA(walldrag),and
thatfrompressureisp•cosα•dA(formdrag).Theabovedragsareinthedirectionofflow.Thetotaldragonthebodyisthesumoftheintegralsofthesequantitieseachevaluatedovertheentiresurfaceofthebodyincontactwiththefluid.ThedragfromwallshearisτwThetotalintegrateddragfromwallsheariscalledwalldrag.Thetotalintegrateddragfrompressureiscalledformdrag.化工原理英文教材流体输送阻力系数Flow-past-immersed-bodies课件Inpotentialflow(idealfluids)thereisnowalldrag.Also,thepressuredraginthedirectionofflowisbalancedbyanequalforceintheoppositedirection,andintegraloftheformdragiszero.Sothereisnonetdraginpotentialflow.Inpotentialflow(idealfluidDragcoefficientsIfFDisthetotaldrag,theaveragedragperunitprojectedareaisFD/A,justasfrictionfactorf
isdefinedastheratioofτwtotheproductofthedensityofthefluidandthevelocityhead,sothedragcoefficientdenotedbyζ(CD),isdefinedastheratioofFD/Atothissameproduct,or(7-1)DragcoefficientsIfFDisthTheequation(7-1)isthesameastheequation(5-71)LetΔp=FD/A,andsubstitutingintheaboveequationTheequation(7-1)isthesameForparticleshavingshapesotherthanspherical,itisnecessarytospecifythesizeandgeometricformofthebodyanditsorientationwithrespecttothedirectionofflowofthefluid.Forparticleshavingshapesotshapefactors:Onemajordimensionischosenasthecharacteristiclength,andotherimportantdimensionsaregivenasratiostothechosenone.shapefactors:
Fromdimensionalanalysis,thedragcoefficientofasmoothsolidinanincompressiblefluiddependsuponaReynoldsnumberandthenecessaryshapefactors.(7-2)Fromdimensionalanalysis,tDragcoefficientsoftypicalshapes
InFig,curvesofCD(ζ)vs.Reareshownforspheres,longcylinders,anddisks.Theaxisofthecylinderandthefaceofthediskareperpendiculartothedirectionofflow.DragcoefficientsoftypicalsForlowReynoldsnumbersthedragforceforasphereconformstoatheoreticalequationcalledStokes´law,whichmaybewritten(7-3)FromEq.(7-3),thedragcoefficientpredictedbyStokes´lawis,usingEq(7-1)(7-4)Intheory,Stokes’lawisvalidonlywhenReisconsiderablylessthan1.ForlowReynoldsnumbersthed
Thelawisespeciallyvaluableforcalculatingtheresistanceofsmallparticles,suchasdustsorfogs,movingthroughgasesorliquidsoflowviscosity,orforthemotionoflargerparticlesthroughhighlyviscousliquids.ThelawisespeciallyvaluabMechanicsofparticlemotionTheforceactingontheparticlemaycomefromadensitydifferencebetweentheparticleandthefluid,oritmaybetheresultofelectricormagneticfields.MechanicsofparticlemotionThreeforcesactonaparticlemovingthroughafluid:
Theexternalforce,gravitationalorcentrifugal;Thebuoyantforce,whichactsparallelwiththeexternalforcebutintheoppositedirection;Thedragforce,whichappearswheneverthereisrelativemotionbetweentheparticleandthefluid.ThreeforcesactonaparticleEquationforone-dimensionalmotionofparticlethroughfluidConsideraparticleofvolumevf,densityρfmovingthroughafluid.Threeforcesactingonaparticleare:(1)externalforce:Fe=Vf
ρf
ae(2)buoyantforce:Fb=Vfρae(3)dragforce:FeFbFDEquationforone-dimensionalmThentheresultantforceontheparticleis
Fe-Fb–Fd,Theaccelerationoftheparticleisdu/dt,
(7-25)substitutingtheforcestoEq(7-27)gives(7-30)ThentheresultantforceonthTerminalvelocityThedragalwaysincreaseswithvelocity,theaccelerationdu/dtofaparticledecreaseswithtimeandapproachestozero.Theparticlequicklyreachesaconstantvelocity,whichisthemaximumattainableundercircumstances,andwhichiscalledtheterminalvelocityut.TerminalvelocityThedragalwa(7-31)Theterminalvelocityisfoundbytakingdu/dt=0,thenfromEq(7-31)(7-32)化工原理英文教材流体输送阻力系数Flow-past-immersed-bodies课件Inthegravitationalsetting,ae=g(7-33)
motioninacentrifugalfield,theaccelerationfromcentrifugalforcefromcirclemotionis
ae=rω2wherer=radiusofpathofparticle
ω=angularvelocity,radians/secInthegravitationalsetting,theterminalvelocityis(7-34)theterminalvelocityisdragcoefficientThequantitativeuseofEq(7-33)and(7-34)requiresthatnumericalvaluesisavailableforthedragcoefficientζ.dragcoefficientThequantitThedragcurveshowninFig.7-6applies,however,onlyunderrestrictedconditions.Theparticlemustbeasolidsphere,itmustbefarfromotherparticlesandfromthevesselwallsothattheflowpatternaroundtheparticleisnotdistorted,andtheparticlemustbemovingatitsterminalvelocitywithrespecttothefluid.ThedragcurveshowninFig.7-Whentheparticleatthesufficientdistancefromtheboundariesofthecontainerandfromotherparticles,sothatitsfallisnotaffectedbythem,theprocessiscalledfreesettling.Ifthemotionofparticleisimpededbyotherparticles,whichhappenwhentheparticlesareneareachothereventhoughtheymaynotactuallybecolliding,theprocessis
calledhinderedsettling.WhentheparticleatthesuffiIftheparticlesareverysmall,Brownianmovementappears.Thiseffectbecomesappreciableataparticlesizeofabout2-3µmandpredominatesovertheforceofgravitywithaparticlesizeof0.1orless.IftheparticlesareverysmTherandommovementoftheparticletendstosuppresstheeffectoftheforceofgravity,sosettlingdoesnotoccur.ApplicationofcentrifugalforcereducestherelativeeffectofBrownianmovement.TherandommovementoftheparMovementofsphericalparticlesIftheparticlesarespheresofdiameterdp
(7-35)And
(7-36)MovementofsphericalparticleSubstitutionofVpandApfromEq(7-35)and(7-36)intoEq(7-33)and(7-34)gives(7-37)And(7-37a)SubstitutionofVpandApfromTheterminalvelocitiesatthedifferentReynoldsnumber
Intheory,stokes’lawisvalidonlywhenReisconsiderablylessthanunity.
Eq.(7-4)maybeusedwithsmallerrorforallReynoldsnumberslessthan1.TheterminalvelocitiesattheForgravitysettlingofaspheres,atlowReynoldsnumbers,thedragcoefficientvariesinverselywithRe.(7-38)andsubstitutingEq(7-38)into
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纺织品批发商客户关系管理考核试卷
- 珠宝首饰设计与生活美学融合考核试卷
- 矿用通讯设备与网络技术考核试卷
- 玻璃制品耐候性能测试考核试卷
- 娱乐用品生产设备智能化改造与升级考核试卷
- 牛只生长发育与饲养管理优化考核试卷
- 玻璃加工过程中的污染控制考核试卷
- 建筑装饰工程信息模型(BIM)应用考核试卷
- 岭南师范学院《工程造价算量信息化综合》2023-2024学年第一学期期末试卷
- 宁夏医科大学《器官-系统模块三》2023-2024学年第二学期期末试卷
- 制造业劳务外包质量控制制度
- DB35T 1844-2019 高速公路边坡工程监测技术规程
- 2024年代打包发货合作协议书模板
- 主动脉夹层完整版课件
- 医院感染相关法律法规课件
- 《飞向太空的航程》名师课件
- 个人理财-形考作业3(第6-7章)-国开(ZJ)-参考资料
- 2025年哈尔滨市中考数学模拟试卷(附答案解析)
- 2024年上海客运驾驶员从业资格证
- 父母赠与现金合同范本
- 人教版小学数学五年级下册《分数加减混合运算》教学设计
评论
0/150
提交评论