版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,直线AC,DF被三条平行线所截,若DE:EF=1:2,AB=2,则AC的值为()A.6 B.4 C.3 D.2.如图,BA=BC,∠ABC=80°,将△BDC绕点B逆时针旋转至△BEA处,点E,A分别是点D,C旋转后的对应点,连接DE,则∠BED为()A.50° B.55° C.60° D.65°3.已知函数是的图像过点,则的值为()A.-2 B.3 C.-6 D.64.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点 D.△ABC三条高所在直线的交点.5.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=CD;④AF=AB+CF.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个6.如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位7.如图,是的直径,点,在上,连接,,,如果,那么的度数是()A. B. C. D.8.如图,为外一点,分别切于点切于点且分别交于点,若,则的周长为()A. B. C. D.9.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为().A. B. C. D.10.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个()A.45 B.48 C.50 D.5511.如图,已知扇形BOD,DE⊥OB于点E,若ED=OE=2,则阴影部分面积为()A. B. C. D.12.从1、2、3、4四个数中随机选取两个不同的数,分别记为,,则满足的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,以此类推,为了投资少而获利大,每个遮阳伞每天应提高_______________。14.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m2下降到12月份的5670元/m2,则11、12两月平均每月降价的百分率是_____.15.半径为4的圆中,长为4的弦所对的圆周角的度数是_________.16.如图,点,分别在线段,上,若,,,,则的长为________.17.如图,直线与抛物线交于,两点,点是轴上的一个动点,当的周长最小时,_.18.已知⊙O的直径为10cm,线段OP=5cm,则点P与⊙O的位置关系是__.三、解答题(共78分)19.(8分)如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.20.(8分)为了提高教学质量,促进学生全面发展,某中学计划投入99000元购进一批多媒体设备和电脑显示屏,且准备购进电脑显示屏的数量是多媒体设备数量的6倍.现从商家了解到,一套多媒体设备和一个电脑显示屏的售价分别为3000元和600元.(1)求最多能购进多媒体设备多少套?(2)恰逢“双十一”活动,每套多媒体设备的售价下降,每个电脑显示屏的售价下降元,学校决定多媒体设备和电脑显示屏的数量在(1)中购进最多量的基础上都增加,实际投入资金与计划投入资金相同,求的值.21.(8分)对于平面直角坐标系中的点和半径为1的,定义如下:①点的“派生点”为;②若上存在两个点,使得,则称点为的“伴侣点”.应用:已知点(1)点的派生点坐标为________;在点中,的“伴侣点”是________;(2)过点作直线交轴正半轴于点,使,若直线上的点是的“伴侣点”,求的取值范围;(3)点的派生点在直线,求点与上任意一点距离的最小值.22.(10分)如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子.(纸板的厚度忽略不计).(1)若该无盖盒子的底面积为900cm2,求剪掉的正方形的边长;(2)求折成的无盖盒子的侧面积的最大值.23.(10分)某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标;(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?24.(10分)如图,在中,,是外接圆,点是圆上一点,点,分别在两侧,且,连接,延长到点,使.(1)求证:为的切线;(2)若的半径为1,当是直角三角形时,求的面积.25.(12分)在平面直角坐标系中的两个图形与,给出如下定义:为图形上任意一点,为图形上任意一点,如果两点间的距离有最小值,那么称这个最小值为图形间的“和睦距离”,记作,若图形有公共点,则.(1)如图(1),,,⊙的半径为2,则,;(2)如图(2),已知的一边在轴上,在上,且,,.①是内一点,若、分别且⊙于E、F,且,判断与⊙的位置关系,并求出点的坐标;②若以为半径,①中的为圆心的⊙,有,,直接写出的取值范围.26.如图,在Rt△ABC中,∠ACB=90°.(1)利用尺规作图,在BC边上求作一点P,使得点P到边AB的距离等于PC的长;(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)(2)在(1)的条件下,以点P为圆心,PC长为半径的⊙P中,⊙P与边BC相交于点D,若AC=6,PC=3,求BD的长.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据平行线分线段成比例定理得到比例式,求出BC,计算即可.【详解】解:∵l1∥l2∥l3,∴,又∵AB=2,∴BC=4,∴AC=AB+BC=1.
故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2、A【分析】首先根据旋转的性质,得出∠CBD=∠ABE,BD=BE;其次结合图形,由等量代换,得∠EBD=∠ABC;最后根据等腰三角形的性质,得出∠BED=∠BDE,利用三角形内角和定理求解即可.【详解】∵△BDC绕点B逆时针旋转至△BEA处,点E,A分别是点D,C旋转后的对应点,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故选:A.【点睛】本题主要考查了旋转的性质、等腰三角形的性质,以及三角形内角和定理.解题的关键是根据旋转的性质得出旋转前后的对应角、对应边分别相等,利用等腰三角形的性质得出“等边对等角”,再结合三角形内角和定理,即可得解.3、C【解析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数的图象经过点(-2,3),∴k=-2×3=-1.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4、C【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,
∴凉亭选择△ABC三条角平分线的交点.
故选:C.【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.5、B【分析】根据点E为BC中点和正方形的性质,得出∠BAE的正切值,从而判断①,再证明△ABE∽△ECF,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,可判断②③,过点E作AF的垂线于点G,再证明△ABE≌△AGE,△ECF≌△EGF,即可证明④.【详解】解:∵E是BC的中点,∴tan∠BAE=,∴∠BAE30°,故①错误;∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,在△BAE和△CEF中,,
∴△BAE∽△CEF,∴,∴BE=CE=2CF,∵BE=CF=BC=CD,即2CF=CD,∴CF=CD,故③错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=a,EF=a,AF=5a,∴,,∴,又∵∠B=∠AEF,∴△ABE∽△AEF,∴∠AEB=∠AFE,∠BAE=∠EAG,又∵∠AEB=∠EFC,∴∠AFE=∠EFC,∴射线FE是∠AFC的角平分线,故②正确;过点E作AF的垂线于点G,在△ABE和△AGE中,,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.6、A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7、C【分析】因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,再求的度数.【详解】∵AB是⊙0的直径,
∴∠ADB=90°.
∵,
∴∠B=65°,(同弧所对的圆周角相等).
∴∠BAD=90°-65°=25°故选:C【点睛】本题考查圆周角定理中的两个推论:①直径所对的圆周角是直角②同弧所对的圆周角相等.8、C【分析】根据切线长定理得到PB=PA、CA=CE,DE=DB,根据三角形的周长公式计算即可.【详解】解:∵PA、PB分别切⊙O于点A、B,
∴PB=PA=4,
∵CD切⊙O于点E且分别交PA、PB于点C,D,
∴CA=CE,DE=DB,
∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,
故选:C.【点睛】本题考查的是切线长定理的应用,切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.9、B【分析】取AB的中点M,连接CM,EM,当CE=CM+EM时,CE的值最大,根据旋转的性质得到AC′=AC=2,由三角形的中位线的性质得到EMAC′=2,根据勾股定理得到AB=2,即可得到结论.【详解】取AB的中点M,连接CM,EM,∴当CE=CM+EM时,CE的值最大.∵将直角边AC绕A点逆时针旋转至AC′,∴AC′=AC=2.∵E为BC′的中点,∴EMAC′=2.∵∠ACB=90°,AC=BC=2,∴AB=2,∴CMAB,∴CE=CM+EM.故选B.【点睛】本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.10、A【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【详解】∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选A.11、B【分析】由题意可得△ODE为等腰直角三角形,可得出扇形圆心角为45°,再根据扇形和三角形的面积公式即可得到结论.【详解】解:∵DE⊥OB,OE=DE=2,
∴△ODE为等腰直角三角形,∴∠O=45°,OD=OE=2.∴S阴影部分=S扇形BOD-S△OED=
故答案为:B.【点睛】本题考查的是扇形面积计算、等腰直角三角形的性质,利用转化法求阴影部分的面积是解题的关键.12、C【分析】根据题意列出树状图,得到所有a、c的组合再找到满足的数对即可.【详解】如图:符合的共有6种情况,而a、c的组合共有12种,故这两人有“心灵感应”的概率为.故选:C.【点睛】此题考查了利用树状图法求概率,要做到勿漏、勿多,同时要适时利用概率公式解答.二、填空题(每题4分,共24分)13、4元或6元【分析】设每个遮阳伞每天应提高x元,每天获得利润为S,每个每天应收费(10+x)元,每天的租出量为(100-×10=100-5x)个,由此列出函数解析式即可解答.【详解】解:设每个遮阳伞每天应提高x元,每天获得利润为S,由此可得,
S=(10+x)(100-×10),
整理得S=-5x2+50x+1000,
=-5(x-5)2+1125,
因为每天提高2元,则减少10个,所以当提高4元或6元的时候,获利最大,
又因为为了投资少而获利大,因此应提高6元;
故答案为:4元或6元.【点睛】此题考查运用每天的利润=每个每天收费×每天的租出量列出函数解析式,进一步利用题目中实际条件解决问题.14、10%【分析】设11、12两月平均每月降价的百分率是x,那么11月份的房价为7000(1−x),12月份的房价为7000(1−x)2,然后根据12月份的价格即可列出方程解决问题.【详解】解:设11、12两月平均每月降价的百分率是x,由题意,得:7000(1﹣x)2=5670,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故答案为:10%.【点睛】本题是一道一元二次方程的应用题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.15、或【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得是等边三角形,再利用圆周角定理,即可得出答案.【详解】.如图所示在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵,∴∴是等边三角形∴∴∴∴所对的圆周角的度数为或故答案为:或.【点睛】本题考查了圆周角的问题,掌握圆周角定理是解题的关键.16、7.1【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:,,即,解得,,,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17、.【分析】根据轴对称,可以求得使得的周长最小时点的坐标,然后求出点到直线的距离和的长度,即可求得的面积,本题得以解决.【详解】联立得,解得,或,∴点的坐标为,点的坐标为,∴,作点关于轴的对称点,连接与轴的交于,则此时的周长最小,点的坐标为,点的坐标为,设直线的函数解析式为,,得,∴直线的函数解析式为,当时,,即点的坐标为,将代入直线中,得,∵直线与轴的夹角是,∴点到直线的距离是:,∴的面积是:,故答案为.【点睛】本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.18、点P在⊙O上【分析】知道圆O的直径为10cm,OP的长,得到OP的长与半径的关系,求出点P与圆的位置关系.【详解】因为圆O的直径为10cm,所以圆O的半径为5cm,又知OP=5cm,所以OP等于圆的半径,所以点P在⊙O上.故答案为点P在⊙O上.【点睛】本题考查了点与圆的位置关系,根据OP的长和圆O的直径,可知OP的长与圆的半径相等,可以确定点P的位置.三、解答题(共78分)19、(2)y=﹣x2+3x+2;(2)存在.P(﹣,).(3)【分析】(2)将A,B,C三点代入y=ax2+bx+2求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(2)∵抛物线y=ax2+bx+2(a≠0)与x轴,y轴分别交于点A(﹣2,0),B(2,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+3x+2.(2)存在.理由如下:y=﹣x2+3x+2=﹣(x﹣)2+.∵点D(3,m)在第一象限的抛物线上,∴m=2,∴D(3,2),∵C(0,2)∵OC=OB,∴∠OBC=∠OCB=25°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=25°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为yBP=kx+b(k≠0),把G(0,2),B(2,0)代入,得k=﹣,b=2,∴BP解析式为yBP=﹣x+2.yBP=﹣x+2,y=﹣x2+3x+2当y=yBP时,﹣x+2=﹣x2+3x+2,解得x2=﹣,x2=2(舍去),∴y=,∴P(﹣,).(3)理由如下,如图B(2,0),C(0,2),抛物线对称轴为直线,设N(,n),M(m,﹣m2+3m+2)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴2-=0-m,∴m=∴﹣m2+3m+2=,∴;或∴0-=2-m,∴m=∴﹣m2+3m+2=,∴;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴∴m=∴﹣m2+3m+2=∴综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.20、(1)15套;(2)37.5【分析】(1)设购买A种设备x套,则购买B种设备6x套,根据总价=单价×数量结合计划投入99000元,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;(2)根据总价=单价×数量结合实际投入资金与计划投入资金相同,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【详解】(1)设能购买多媒体设备套,则购买显示屏6x套,根据题意得:解得:答:最多能购买多媒体设备15套.(2)由题意得:设,则原方程为:整理得:解得:,(不合题意舍去)∴.答:的值是37.5.【点睛】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,找出关于x的一元一次不等式;(2)找准等量关系,正确列出一元二次方程.21、(1)(1,0),E、D、;(2);(3)【分析】(1)根据定义即可得到点的坐标,过点E作的切线EM,连接OM,利用三角函数求出∠MEO=30°,即可得到点E是的“伴侣点”;根据点F、D、的坐标得到线段长度与线段OE比较即可判定是否是的“伴侣点”;(2)根据题意求出,∠OGF=60°,由点是的“伴侣点”,过点P作的切线PA、PB,连接OP,OB,证明△OPG是等边三角形,得到点P应在线段PG上,过点P作PH⊥x轴于H,求出点P的横坐标是-,由此即可得到点P的横坐标m的取值范围;(3)设点(x,-2x+6),P(m,n),根据派生点的定义得到3m+n=6,由此得到点P在直线y=-3x+6上,设直线y=-3x+6与x轴交于点A,与y轴交于点B,过点O作OH⊥AB于H,交于点C,求出AB的长,再根据面积公式求出OH即可得到答案.【详解】(1)∵,∴点的派生点坐标为(1,0),∵E(0,-2),∴OE=2,过点E作的切线EM,连接OM,∵OM=1,OE=2,∠OME=90°,∴sin∠MEO=,∴∠MEO=30°,而在的左侧也有一个切点,使得组成的角等于30°,∴点E是的“伴侣点”;∵,∴OF=>OE,∴点F不可能是的“伴侣点”;∵,(1,0),,,∴点D、是的“伴侣点”,∴的“伴侣点”有:E、D、,故答案为:(1,0),E、D、;(2)如图,直线l交y轴于点G,∵,∴,∠OGF=60°∵直线上的点是的“伴侣点”,∴过点P作的切线PA、PB,且∠APB=60°,连接OP,OB,∴∠BOP=30°,∵∠OBP=90°,OB=1,∴OP=2=OG,∴△OPG是等边三角形,∴若点P是的“伴侣点”,则点P应在线段PG上,过点P作PH⊥x轴于H,∵∠POH=90°-60°=30°,OP=2,∴PH=1,∴OH=,即点P的横坐标是-,∴当直线上的点是的“伴侣点”时的取值范围是;(3)设点(x,-2x+6),P(m,n),根据题意得:m+n=x,m-n=-2x+6,∴3m+n=6,即n=-3m+6,∴点P坐标为(m,-3m+6),∴点P在直线y=-3x+6上,设直线y=-3x+6与x轴交于点A,与y轴交于点B,过点O作OH⊥AB于H,交于点C,如图,则A(2,0),B(0,6),∴,∴,∴,∴,即点P与上任意一点距离的最小值为.【点睛】此题考查圆的性质,切线长定理,切线的性质,等腰三角形的性质,锐角三角函数,特殊角的三角函数值,勾股定理,正确掌握各知识点是解题的关键.22、(1)5cm;(1)最大值是800cm1.【分析】(1)设剪掉的正方形的边长为x
cm,则AB=(40-1x)cm,根据盒子的底面积为484cm1,列方程解出即可;(1)设剪掉的正方形的边长为x
cm,盒子的侧面积为y
cm1,侧面积=4个长方形面积;则y=-8x1+160x,配方求最值.【详解】(1)设剪掉的正方形的边长为xcm,则(40﹣1x)1=900,即40﹣1x=±30,解得x1=35(不合题意,舍去),x1=5;答:剪掉的正方形边长为5cm;(1)设剪掉的正方形的边长为xcm,盒子的侧面积为ycm1,则y与x的函数关系式为y=4(40﹣1x)x,即y=﹣8x1+160x,y=﹣8(x﹣10)1+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm1.【点睛】本题考查了一元二次方程的应用和二次函数的最值问题,根据几何图形理解如何建立一元二次方程和函数关系式是解题的关键;明确正方形面积=边长×边长,长方形面积=长×宽;理解长方体盒子的底面是哪个长方形;解题时应该注意如何利用配方法求函数的最大值.23、(1)详见解析;(2)1;(3)10【分析】(1)成绩一般的学生占的百分比=1﹣成绩优秀的百分比﹣成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数,然后补全图形即可.(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.【详解】(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国十大名茶公开课
- CO2压裂液介绍特训
- 3月全国计算机等级考试考务工作培训
- 北半球冬夏气压中心
- 基本公共卫生服务项目信息直报系统介绍课件
- 初聘专业技术职务呈报表
- 情感的记录 课件 2024-2025学年苏少版(2024)初中美术七年级上册
- 2024年初级招标采购从业人员《招标采购专业实务》考前必刷必练题库600题(含真题、必会题)
- 2024年度个人工作总结范文二
- 辽宁省鞍山市海城市西部集团2024-2025学年九年级上学期12月第三次质量监测化学试题含答案
- 颅内感染的护理查房
- 高中数学-人教电子版课本
- MOOC 摄影艺术概论-浙江工商大学 中国大学慕课答案
- 2024年上海市杨浦区高三二模英语试卷及答案
- 全过程工程咨询服务造价咨询服务方案
- 胃癌中医护理方案
- 职业技术学院老年大学建设方案
- 品管圈-降低留置胃管病人非计划性拔管率课件
- DB3205-T 1108-2024 苏式传统文化 苏作家具制作与传承指南
- 成语故事详解:暗箭伤人
- 告别抄袭自强自立课件
评论
0/150
提交评论