2023届湖南长沙市一中学集团数学九上期末达标检测模拟试题含解析_第1页
2023届湖南长沙市一中学集团数学九上期末达标检测模拟试题含解析_第2页
2023届湖南长沙市一中学集团数学九上期末达标检测模拟试题含解析_第3页
2023届湖南长沙市一中学集团数学九上期末达标检测模拟试题含解析_第4页
2023届湖南长沙市一中学集团数学九上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为40万元,2017年交易额为48.4万元,设2015年至2017年“双十一”交易额的年平均增长率为,则根据题意可列方程为()A. B.C. D.2.如图,在菱形ABCD中,∠BAD=120°,AB=2,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A. B. C.2 D.3.如图,AB为圆O直径,C、D是圆上两点,ADC=110°,则OCB度()A.40 B.50 C.60 D.704.如图,AB是⊙O的直径,∠AOC=130°,则∠D等于()A.25° B.35° C.50° D.65°5.甲、乙两位同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的试验可能是()A.掷一枚硬币,出现正面朝上的概率B.掷一枚硬币,出现反面朝上的概率C.掷一枚骰子,出现点的概率D.从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率6.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A. B. C. D.7.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5,6,9,另一个三角形的最长边长为4.5,则它的最短边长是()A. B. C. D.8.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=1789.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米 B.6.3米 C.7.1米 D.9.2米10.在直角坐标系中,点关于坐标原点的对称点的坐标为()A. B. C. D.11.如图,点M在某反比例函数的图象上,且点M的横坐标为,若点和在该反比例函数的图象上,则与的大小关系为()A. B. C. D.无法确定12.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.3 B.-3 C.-1 D.1二、填空题(每题4分,共24分)13.分解因式:2x2﹣8=_____________14.如图,若直线与轴、轴分别交于点、,并且,,一个半径为的,圆心从点开始沿轴向下运动,当与直线相切时,运动的距离是__________.15.如图,在中若,,则__________,__________.16.将矩形纸片ABCD按如下步骤进行操作:(1)如图1,先将纸片对折,使BC和AD重合,得到折痕EF;(2)如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是_____.17.若⊙P的半径为5,圆心P的坐标为(﹣3,4),则平面直角坐标系的原点O与⊙P的位置关系是_____.18.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y(毫克)与时间t(小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.5毫克时治疗有效,则服药一次治疗疾病有效的时间为______小时.三、解答题(共78分)19.(8分)在下列网格图中,每个小正方形的边长均为个单位中,,且三点均在格点上.(1)画出绕顺时针方向旋转后的图形;(2)求点运动路径的长(结果保留).20.(8分)小丹要测量灯塔市葛西河生态公园里被湖水隔开的两个凉亭和之间的距离,她在处测得凉亭在的南偏东方向,她从处出发向南偏东方向走了米到达处,测得凉亭在的东北方向.(1)求的度数;(2)求两个凉亭和之间的距离(结果保留根号).21.(8分)汕头国际马拉松赛事设有“马拉松(公里)”,“半程马拉松(公里)”,“迷你马拉松(公里)”三个项目,小红和小青参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小红被分配到“马拉松(公里)”项目组的概率为___________.(2)用树状图或列表法求小红和小青被分到同一个项目组进行志愿服务的概率.22.(10分)如图所示,在中,于点E,于点F,延长AE至点G,使EG=AE,连接CG.(1)求证:;(2)求证:四边形EGCF是矩形.23.(10分)如图,中,,,为内部一点,.求证:.24.(10分)如图,已知直线与两坐标轴分别交于A、B两点,抛物线经过点A、B,点P为直线AB上的一个动点,过P作y轴的平行线与抛物线交于C点,抛物线与x轴另一个交点为D.(1)求图中抛物线的解析式;(2)当点P在线段AB上运动时,求线段PC的长度的最大值;(3)在直线AB上是否存在点P,使得以O、A、P、C为顶点的四边形是平行四边形?若存在,请求出此时点P的坐标,若不存在,请说明理由.25.(12分)周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽,测量时,他们选择河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.35m,BD=7m.测量示意图如图所示.请根据相关测量信息,求河宽AB.26.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=________°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.

参考答案一、选择题(每题4分,共48分)1、C【分析】由2015年至2017年“双十一”交易额的年平均增长率为x,根据2015年及2017年该网店“双十一”全天交易额,即可得出关于x的一元二次方程,从而得出结论.【详解】解:由2015年至2017年“双十一”交易额的年平均增长率为x,根据题意得:.故选C.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列一元二次方程是解题的关键.2、B【分析】如图,根据圆周角定理可得点F在以BC为直径的圆上,根据菱形的性质可得∠BCM=60°,根据圆周角定理可得∠BOM=120°,利用弧长公式即可得答案.【详解】如图,取的中点,中点M,连接OM,BM,∵四边形是菱形,∴BM⊥AC,∴当点与重合时,点与中点重合,∵,∴点的运动轨迹是以为直径的圆弧,∵四边形是菱形,,∴,∴,∴的长.故选:B.【点睛】本题考查菱形的性质、圆周角定理、弧长公式及轨迹,根据圆周角定理确定出点F的轨迹并熟练掌握弧长公式是解题关键.3、D【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ADC=110°,即优弧的度数是220°,∴劣弧的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4、A【解析】试题分析:∵AB是⊙O的直径,∴∠BOC=180°-∠AOC=180°-130°=50°,∴∠D=∠BOC=×50°=25°.故选A.考点:圆周角定理5、D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A.掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B.掷一枚硬币,出现反面朝上的概率为,故此选项不符合题意;C.掷一枚骰子,出现点的概率为,故此选项不符合题意;D.从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率为,故此选项符合题意;故选:D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.6、D【分析】根据第三个图形是三角形的特点及折叠的性质即可判断.【详解】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【点晴】此题主要考查矩形的折叠,解题的关键是熟知折叠的特点.7、B【分析】根据题意可得出两个三角形相似,利用最长边数值可求出相似比,再用三角形的最短边乘以相似比即可.【详解】解:由题意可得出:两个三角形的相似比为:,所以另一个三角形最短边长为:.故选:B.【点睛】本题考查的知识点是相似三角形的相似比,根据题目求出两个三角形的相似比是解此题的关键.8、A【分析】设道路的宽度为x米.把道路进行平移,使六块草坪重新组合成一个矩形,根据矩形的面积公式即可列出方程.【详解】解:设横、纵道路的宽为x米,把两条与AB平行的道路平移到左边,另一条与AD平行的道路平移到下边,则六块草坪重新组合成一个矩形,矩形的长、宽分别为(50﹣2x)米、(30﹣x)米,所以列方程得(50﹣2x)×(30﹣x)=178×6,故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,对图形进行适当的平移是解题的关键.9、A【解析】如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i=,∴设CQ=4x、BQ=3x,由BQ²+CQ²=BC²可得(4x)²+(3x)²=102,解得:x=2或x=−2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP=≈13.1,∴AB=AP−BQ−PQ=13.1−6−2=5.1,故选A.点睛:此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.10、D【分析】根据关于原点对称的点的坐标特征:横、纵坐标都相反,进行判断即可.【详解】点A(-1,2)关于原点的对称点的坐标为(1,-2).故选:D.【点睛】本题考查点的坐标特征,熟记特殊点的坐标特征是关键.11、A【分析】反比例函数在第一象限的一支y随x的增大而减小,只需判断a与2a的大小便可得出答案.【详解】∵a<2a又∵反比例函数在第一象限的一支y随x的增大而减小∴故选:A.【点睛】本题考查比较大小,需要用到反比例函数y与x的增减变化,本题直接读图即可得出.12、B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a、b的值即可.【详解】∵点A(1,a)、点B(b,2)关于原点对称,∴a=﹣2,b=﹣1,∴a+b=﹣3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.二、填空题(每题4分,共24分)13、2(x+2)(x﹣2)【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.14、3或1【解析】分圆运动到第一次与AB相切,继续运算到第二次与AB相切两种情况,画出图形进行求解即可得.【详解】设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,在Rt△BEC′中,∠ABC=30°,EC′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=1,故答案为3或1.【点睛】本题考查了切线的性质、含30度角的直角三角形的性质,会用分类讨论的思想解决问题是关键,注意数形结合思想的应用.15、40°100°【分析】根据等边对等角可得,根据三角形的内角和定理可得的度数.【详解】解:∵,∴,∴,故答案为:40°,100°.【点睛】本题考查等边对等角及三角形的内角和定理,掌握等腰三角形的性质是解题的关键.16、【分析】根据折叠的性质得到BE=AB,根据矩形的性质得到AB=CD,△BOE∽△DOC,再根据相似三角形的性质即可求解.【详解】解:由折叠的性质得到BE=AB,∵四边形ABCD是矩形,∴AB=CD,△BOE∽△DOC,∴△BOE与△DOC的相似比是,∴点O到边AB的距离与点O到边CD的距离的比值是.故答案为:.【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、相似三角形的判定与性质等知识,综合性强,还考查了操作、推理、探究等能力,是一道好题.17、点O在⊙P上【分析】由勾股定理等性质算出点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:由勾股定理,得OP==5,d=r=5,故点O在⊙P上.故答案为点O在⊙P上.【点睛】此题考查点与圆的位置关系的判断.解题关键在于要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.18、7.1【分析】将点(1,4)分别代入y=kt,中,求k、m,确定函数关系式,再把y=0.5代入两个函数式中求t,把所求两个时间t作差即可.【详解】解:把点(1,4)分别代入y=kt,中,得k=4,m=4,∴y=4t,,把y=0.5代入y=4t中,得t1=,把y=0.5代入中,得t2=,∴治疗疾病有效的时间为:t2-t1=故答案为:7.1.【点睛】本题考查了本题主要考查函数模型的选择与应用、反比例函数、一次函数的实际应用.关键是用待定系数法求函数关系式,理解题意,根据已知函数值求自变量的差.三、解答题(共78分)19、(1)见解析;(2)【解析】(1)利用网格特点和旋转的性质画图;(2)点C的运动路径是弧形,找到半径,圆心角即可求解.【详解】解:如图所示,即为所求;,∴点C的运动路径是以A为圆心,AC长为半径的弧,点的运动路径的长为:【点睛】本题考查了网格中图形的旋转及旋转轨迹,还考查了弧长公式的运算.20、(1)60°;(2)米.【解析】(1)根据方位角的概念得出相应角的角度,再利用平行线的性质和三角形内角和进行计算即可求得答案;(2)作CD⊥AB于点D,得到两个直角三角形,再根据三角函数的定义和特殊角的三角函数值可求得AD、BD的长,相加即可求得A、B的距离.【详解】解:(1)由题意可得:∠MAB=75°,∠MAC=30°,∠NCB=45°,AM∥CN,∴∠BAC=75°−30°=45°,∠MAC=∠NAC=30°∴∠ACB=30°+45°=75°,∴∠ABC=180°−∠BAC−∠ACB=60°;(2)如图,作CD⊥AB于点D,在Rt△ACD中,AD=CD=AC∙sin45°=300×=150,在Rt△BCD中,BD=CDtan30°=150×=50,∴AB=AD+BD=150+50,答:两个凉亭A,B之间的距离为(150+50)米.【点睛】本题考查了解直角三角形的应用,在解决有关方位角的问题时,一般根据题意理清图形中各角的关系,有时所给的方位角不在三角形中,需要通过平行线的性质或互余的角等知识转化为所需要的角,解决第二问的关键是作CD⊥AB构造含特殊角的直角三角形.21、(1);(2)图见解析,【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为、、,画树状图列出所有可能的结果,从中找到符合条件的结果数,再根据概率公式计算即可.【详解】解:(1);(2)记这三个项目分别为、、,画树状图为:共有种等可能的结果数,其中小红和小青被分配到同一个项目组的结果数为,所以小红和小青被分到同一个项目组进行志愿服务的概率为.【点睛】本题主要考察概率公式、树状图、列表法,熟练掌握公式是关键.22、(1)见解析;(2)见解析.【分析】(1)根据平行四边形的性质可得,进而可得,由,得,由AAS证明即可;(2)由(1)全等三角形的性质得AE=CF,证出EG=CF,则四边形EGCF是平行四边形,由,即可得证.【详解】证明:(1)∵四边形ABCD是平行四边形,∴,∴,∵于点E,于点F,∴,,在和中,,∴;(2)由(1)得:,,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,又∵,∴四边形EGCF是矩形.【点睛】本题主要考查平行四边形的性质、全等三角形的判定及矩形的判定,关键是根据平行四边形的性质得到三角形全等的条件,然后由三角形全等的性质得到边的等量关系,进而根据有一个角为直角的平行四边形是矩形来判定即可.23、详见解析【分析】利用等式的性质判断出∠PBC=∠PAB,即可得出结论;【详解】解:,,又,,,又,.【点睛】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠PBC=∠PAB是解本题的关键.24、(1);(2)当时,线段PC有最大值是2;(3),,【分析】把x=0,y=0分别代入解析式可求点A,点B坐标,由待定系数法可求解析式;设点C,可求PC,由二次函数的性质可求解;设点P的坐标为(x,−x+2),则点C,分三种情况讨论,由平行四边形的性质可出点P的坐标.【详解】解:(1)可求得A(0,2),B(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论