![高一数学必修二知识点_第1页](http://file4.renrendoc.com/view/faf8aef0eb47e88e27e57185ceab6231/faf8aef0eb47e88e27e57185ceab62311.gif)
![高一数学必修二知识点_第2页](http://file4.renrendoc.com/view/faf8aef0eb47e88e27e57185ceab6231/faf8aef0eb47e88e27e57185ceab62312.gif)
![高一数学必修二知识点_第3页](http://file4.renrendoc.com/view/faf8aef0eb47e88e27e57185ceab6231/faf8aef0eb47e88e27e57185ceab62313.gif)
![高一数学必修二知识点_第4页](http://file4.renrendoc.com/view/faf8aef0eb47e88e27e57185ceab6231/faf8aef0eb47e88e27e57185ceab62314.gif)
![高一数学必修二知识点_第5页](http://file4.renrendoc.com/view/faf8aef0eb47e88e27e57185ceab6231/faf8aef0eb47e88e27e57185ceab62315.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——高一数学必修二知识点高中数学学识对比多,(高一数学)必修二需要记忆的学识点原理也好多,做好学识点的整理能够扶助同学们了解数学大体布局,更好的学习数学。下面是我为你整理的高一数学必修二学识点归纳,梦想能帮到你。
高一数学必修二学识点1
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平(面相)交、与平面平行
①直线在平面内——有多数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)
规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为[0°,90°]
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理:假设平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
直线和平面垂直
直线和平面垂直的定义:假设一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面彼此垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:假设一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:假设两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点
直线和平面平行的定义:假设一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:假设平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:假设一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
高一数学必修二学识点2
1.函数的零点
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.
(3)函数零点的判定(零点存在性定理):
假设函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
2.二次函数y=ax2+bx+c(a0)的图象与零点的关系
3.二分法
对于在区间[a,b]上连续不断且f(a)·f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步迫近零点,进而得到零点近似值的(方法)叫做二分法.
4.函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的确定是一个数字,而不是一个坐标.
5.对函数零点存在的判断中,务必强调:
(1)f(x)在[a,b]上连续;
(2)f(a)·f(b)0;
(3)在(a,b)内存在零点.
这是零点存在的一个充分条件,但不必要.
6.对于定义域内连续不断的函数,其相邻两个零点之间的全体函数值保持同号.
1.等比数列的有关概念
(1)定义:
假设一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q为非零常数).
(2)等比中项:
假设a、G、b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项?a,G,b成等比数列?G2=ab.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1.
3.等比数列{an}的常用性质
(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),那么am·an=ap·aq=a.
更加地,a1an=a2an-1=a3an-2=….
(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.
4.等比数列的特征
(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.
(2)由an+1=qan,q≠0并不能立刻断言{an}为等比数列,还要验证a1≠0.
5.等比数列的前n项和Sn
(1)等比数列的前n项和Sn是用错位相减法求得的,留神这种思想方法在数列求和中的运用.
(2)在运用等比数列的前n项和公式时,务必留神对q=1与q≠1分类议论,防止因疏忽q=1这一特殊情形导致解题失误.
高一数学必修二学识点3
1、棱柱
棱柱的定义:有两个面彼此平行,其余各面都是四边形,并且每两个四边形的公共边都彼此平行,这些面围成的几何体叫做棱柱。
棱柱的性质
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形
2、棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形
(2)平行于底面的截面与底面是好像的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
3、正棱锥
正棱锥的定义:假设一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年官方版无子女自愿离婚协议策划范本
- 2025年农业用地租凭协议标准版
- 2025年农业租赁协议指导文本
- 2025年温州货运资格证模拟考试题库
- 2025年人工智能开发合同
- 2025年水产生物遗传资源共享协议书
- 2025年租户退房策划流程协议书
- 2025年养老院照护服务合同示范文本
- 2025年二手房买卖移转协议
- 2025年邯郸道路货运驾驶员从业资格证考试题库
- GB/Z 30966.71-2024风能发电系统风力发电场监控系统通信第71部分:配置描述语言
- 脑梗死的护理查房
- 2025高考数学专项复习:概率与统计的综合应用(十八大题型)含答案
- 产后抑郁症讲课课件
- 2024-2030年中国紫苏市场深度局势分析及未来5发展趋势报告
- 销售人员课件教学课件
- LED大屏技术方案(适用于简单的项目)
- 2024智慧城市数据采集标准规范
- Lesson 6 What colour is it(教学设计)-2023-2024学年接力版英语三年级下册
- 历年国家二级(Python)机试真题汇编(含答案)
- 第五单元任务二《准备与排练》教学设计 统编版语文九年级下册
评论
0/150
提交评论