版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65° B.70° C.75° D.85°2.某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.53.如图,从边长为()cm的正方形纸片中剪去一个边长为()cm的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A. B. C. D.4.下列说法正确的是()A.-3是-9的平方根 B.1的立方根是±1C.是的算术平方根 D.4的负的平方根是-25.已知x2-2kx+64是完全平方式,则常数k的值为()A.8 B.±8 C.16 D.±166.如图等边△ABC边长为1cm,D、E分别是AB、AC上两点,将△ADE沿直线DE折叠,点A落在处,A在△ABC外,则阴影部分图形周长为()A.1cm B.1.5cm C.2cm D.3cm7.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是()A.(0,1) B.(2,﹣1) C.(4,1) D.(2,3)8.下列等式中,正确的是().A. B. C. D.9.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. B. C. D.10.以下列各组数据为三角形的三边,能构成直角三角形的是()A.4cm,8cm,7cm B.2cm,2cm,2cmC.2cm,2cm,4cm D.6cm,8cm,10cm二、填空题(每小题3分,共24分)11.已知一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而增大,请你写出一个符合上述条件的函数关系式:_____.12.在中,,的垂直平分线与所在的直线相交所得到的锐角为,则等于______________度.13.某商店卖水果,数量x(千克)与售价y(元)之间的关系如下表,(y是x的一次函数)当x=7千克时,售价y=______元.14.在△ABC中,∠ACB=90°,∠B=60°,AB=8,点D是直线BC上动点,连接AD,在直线AD的右侧作等边△ADE,连接CE,当线段CE的长度最小时,线段CD的长度为____.15.函数中自变量x的取值范围是______.16.已知x是的整数部分,y是的小数部分,则xy的值_____.17.已知9y2+my+1是完全平方式,则常数m的值是_______.18.如图,在中,有,.点为边的中点.则的取值范围是_______________.三、解答题(共66分)19.(10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.20.(6分)如图,点、在上,,,.求证:.21.(6分)已知一次函数的解析式为,求出关于轴对称的函数解析式.22.(8分)阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解析:由分母为,可设则对应任意x,上述等式均成立,,,..这样,分式被拆分成了一个整式与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)当时,直接写出________,的最小值为________.23.(8分)在平面直角坐标系中,的三个顶点坐标分别为,,.(1)画出关于轴对称的;并写出的坐标;(2)是直角三角形吗?说明理由.24.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.25.(10分)象山红美人柑橘是我省农科院研制的优质品种,宁波市某种植基地2017年种植“象山红美人”100亩,到2019年“象山红美人”的种植面积达到196亩.(1)求该基地这两年“象山红美人”种植面积的平均增长率;(2)市场调查发现,当“象山红美人”的售价为45元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“象山红美人”的平均成本价为33元/千克,若使销售“象山红美人”每天获利3150元,则售价应降低多少元?26.(10分)如图,在中,,,平分,延长至,使.(1)求证:;(2)连接,试判断的形状,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据全等三角形的性质求出∠D和∠E,再根据三角形内角和定理即可求出∠EAD的度数.【详解】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.【点睛】本题主要考查了全等三角形的性质及三角形内角和,掌握全等三角形的性质是解题的关键.2、D【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.3、D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+1.故选D.4、D【解析】各式利用平方根,立方根定义判断即可.【详解】A.﹣3是9的平方根,不符合题意;B.1的立方根是1,不符合题意;C.当a>0时,是的算术平方根,不符合题意;D.4的负的平方根是-2,符合题意.故选D.【点睛】本题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解答本题的关键.5、B【解析】∵x2-2kx+64是一个完全平方式,∴x2-2kx+64=(x+8)2或x2-2kx+64=(k−8)2∴k=±8.故选B.6、D【分析】由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.【详解】解:如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DG+GA′+EF+FA′+DB+CE+BG+GF+CF=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选D.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.7、C【分析】把点(2,1)的横坐标加2,纵坐标不变即可得到对应点的坐标.【详解】解:∵将点(2,1)向右平移2个单位长度,∴得到的点的坐标是(2+2,1),即:(4,1),故选:C.【点睛】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.8、A【分析】根据实数的性质即可依次判断.【详解】A.,正确;B.,故错误;C.,故错误;D.,故错误,故选A.【点睛】此题主要考查实数的化简,解题的关键是熟知实数的性质.9、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程10、D【解析】分析:本题用勾股定理的逆定理.即可得出.解析:A选项中,所以不能构成直角三角形,B选项是等边三角形,所以不能构成直角三角形,C选项不能构成三角形,所以不能构成直角三角形,D选项中,所以能构成直角三角形,故选D.二、填空题(每小题3分,共24分)11、y=x+1【解析】根据题意可知k>0,这时可任设一个满足条件的k,则得到含x、y、b三个未知数的函数式,将(0,1)代入函数式,求得b,那么符合条件的函数式也就求出.【详解】解:∵y随x的增大而增大∴k>0∴可选取1,那么一次函数的解析式可表示为:y=x+b把点(0,1)代入得:b=1∴要求的函数解析式为:y=x+1.故答案为y=x+1【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,需注意应先确定x的系数,然后把适合的点代入求得常数项.12、65°或25°【分析】(1)当△ABC是锐角三角形时,根据题目条件得到∠A=50°,利用△ABC是等腰三角形即可求解;(2)当△ABC是钝角三角形时,同理可得即可得出结果.【详解】解:(1)当△ABC是锐角等腰三角形时,如图1所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠A=180°-90°-40°=50°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-50°)÷2=65°(2)当△ABC是钝角三角形时,如图2所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠AED+∠ADE=∠BAC∴∠BAC=90°+40°=130°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-130°)÷2=25°∴∠ABC=65°或25°故答案为:65°或25°【点睛】本题主要考查的是垂直平分线以及三角形的外角性质,正确的运用这两个知识点是解题的关键.13、22.5元【分析】根据表格的数据可知,x与y的关系式满足一次函数,则设为,然后利用待定系数法求出解析式,然后求出答案即可.【详解】解:根据题意,设y关于x的一次函数:y=kx+b,当x=0.5,y=1.6+0.1=1.7;当x=1,y=3.2+0.1=3.3;将数据代入y=kx+b中,得,解得:∴一次函数为:y=3.2x+0.1;当x=7时,;故答案为:.【点睛】此题主要考查了一次函数的性质,关键是看懂表格中数据之间的关系.14、1.【分析】以AC为边作等边△ACF,连接DF,可证△ACE≌△AFD,可得CE=DF,则DF⊥CB时,DF的长最小,即DE的长最小,即可求解.【详解】如图,以AC为边作等边△ACF,连接DF.∵∠ACB=90°,∠B=10°,∴∠BAC=30°,∵AB=8,∴BC=4,∴AC==4,∵△ACF是等边三角形,∴CF=AC=AF=4,∠BCF=30°.∵△ADE是等边三角形,∴AD=AE,∠FAC=∠DAE=10°,∴∠FAD=∠CAE,在△ACE和△AFD中,,∴△ACE≌△AFD(SAS),∴CE=DF,∴DF⊥BC时,DF的长最小,即CE的长最小.∵∠FCD'=90°﹣10°=30°,D'F⊥CB,∴,∴CD'==1.故答案为:1.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.15、【分析】根据二次根式及分式有意义的条件,结合所给式子得到关于x的不等式组,解不等式组即可求出x的取值范围.【详解】由题意得,,解得:-2<x≤3,故答案为-2<x≤3.【点睛】本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.16、2﹣1【分析】根据可得,x=2,y=﹣2,代入求解即可.【详解】∵x是的整数部分,∴x=2,∵y是的小数部分,∴y=﹣2,∴yx=2(﹣2)=2﹣1,故答案为2﹣1.【点睛】本题考查了无理数的混合运算问题,掌握无理数大小比较的方法以及无理数混合运算法则是解题的关键.17、±6【分析】利用完全平方公式的结构特征确定出m的值即可.【详解】∵9y2+my+1是完全平方式,
∴m=±2×3=±6,
故答案为:±6.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.18、【分析】根据题意延长AD至E,使DE=AD,根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,任意两边只差小于第三边求出AE,然后求解即可.【详解】解:如图,延长AD至E,使DE=AD,∵AD是△ABC中BC边上的中线,∴BD=CD,在△ABD和△ECD中,∴△ABD≌△ECD(SAS),∴CE=AB=5,∵AC=7,∴5+7=12,7-5=2,∴2<AE<12,∴1<AD<1.故答案为:1<AD<1.【点睛】本题考查全等三角形的判定与性质,三角形的三边关系,“遇中线,加倍延”构造出全等三角形是解题的关键.三、解答题(共66分)19、(1)购买一个甲种文具15元,一个乙种文具5元;(2)有5种购买方案【分析】(1)设购买一个乙种文具x元,则一个甲种文具(x+10)元,根据“用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,”列方程解答即可;
(2)设购买甲种文具a个,则购买乙种文具(120-a)个,根据题意列不等式组,解之即可得出a的取值范围,结合a为正整数即可得出a的值,进而可找出各购买方案.【详解】解:(1)设购买一个乙种文具x元,则一个甲种文具(x+10)元,由题意得:
,解得x=5,经检验,x=5是原方程的解,且符合题意,x+10=15(元),
答:购买一个甲种文具15元,一个乙种文具5元;
(2)设购买甲种文具a个,则购买乙种文具(120-a)个,根据题意得:
,
解得36≤a≤1,
∵a是正整数,
∴a=36,37,38,39,1.
∴有5种购买方案.【点睛】本题考查分式方程的应用、一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.20、证明见解析.【分析】由可得,BC=EF,从而可利用AAS证得△ABC≌△DEF,从而得出AB=DE.【详解】证明:,即,在和中,,.【点睛】本题考查的是全等三角形的判定,本题的关键是掌握全等三角形的判定方法.21、y=-2x-1【分析】求出与x轴、y轴的交点坐标,得到关于y轴对称点的坐标,即可求出过此两点的函数解析式.【详解】令中y=0,得x=;x=0,得y=-1,∴与x轴交点为(,0),与y轴交点为(0,-1),设关于y轴对称的函数解析式为y=kx+b,过点(-,0)、(0,-1),∴,解得,∴关于轴对称的函数解析式为y=-2x-1.【点睛】此题考查待定系数法求函数解析式,题中求出原函数解析式与坐标轴的交点,得到关于y轴对称点的坐标是解题的关键.22、(1)分式被拆分成了一个整式与一个分式的和;(2)0;1.【分析】(1)参照例题材料,设,然后求出m、n的值,从而即可得出答案;(2)先根据得出,再根据不等式的运算即可得.【详解】(1)由分母为,可设对应任意x,上述等式均成立,解得这样,分式被拆分成了一个整式与一个分式的和;(2)由(1)得当时,,且当时,等号成立则当时,取得最小值,最小值为1故答案为:0;1.【点睛】本题考查了分式的拆分运算、平方数的非负性、不等式的运算等知识点,读懂材料,掌握分式的运算法则是解题关键.23、(1)图见解析,C1(5,2)(2)是直角三角形,理由见解析【分析】(1)直接根据轴对称的性质画出,并写出的坐标;(2)根据勾股定理即可求解.【详解】(1)如图所示,为所求,C1(5,2);(2)AB=,AC=,BC=,∵AB2=AC2+BC2∴是直角三角形.【点睛】本题考查的是作图−轴对称变换,熟知关于y轴对称的点的坐标特点及勾股定理是解答此题的关键.24、(1)详见解析;(2)详见解析.【分析】(1)直接利用勾股定理结合网格得出符合题意的图形,(2)直接利用勾股定理结合网格得出符合题意的图形.【详解】解:(1)如图1所示:正方形ABCD即为所求;(2)如图2所示:三角形ABC即为所求.【点睛】本题考查了利用勾股定理求直角三角形的边长,熟练掌握定理即可求解.25、(1)平均增长率为40%;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版城市绿化树苗采购合同范本范文3篇
- 二零二五年度智能机器人研发与制造劳动合同3篇
- 二零二五年度车辆借用合同(含绿色出行奖励)3篇
- 2025年材料供应商产品追溯与安全合同3篇
- 二零二五年度智能渔业鱼塘承包与产业链合作合同4篇
- 企业2024年管理咨询与服务具体合同一
- 二零二四商铺买卖合同补充协议书3篇
- 二零二四年数据中心设备租赁及场地服务合同3篇
- 二零二四年度在线教育平台讲师聘用合同范本3篇
- 二零二五年度咖啡连锁店经营管理合同范本3篇
- 政府机关保洁服务投标方案(技术方案)
- HIV感染者合并慢性肾病的治疗指南
- 诊所抗菌药物管理制度
- 招标监督报告
- 项目立项申请书
- 干部职工文明守则和行为规范(完整版)
- 世界古代史-对接选择性必修 高考历史一轮复习
- 格式塔心理学与文艺心理学
- (汽车制造论文)机器人在汽车制造中应用
- 食管癌护理查房20352
- T-CASAS 004.2-2018 4H碳化硅衬底及外延层缺陷图谱
评论
0/150
提交评论