版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.英国物理学家和数学家牛顿提出了物体在常温环境下温度变化的冷却模型,设物体的初始温度为,环境温度为,其中,经过后物体温度满足(其中k为正常数,与物体和空气的接触状况有关).现有一个的物体,放在的空气中冷却,后物体的温度是,则()(参考数据:)A.1.17 B.0.85C.0.65 D.0.232.若点、、在同一直线上,则()A. B.C. D.3.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A.98 B.99C.99.5 D.1004.命题的否定是()A. B.C. D.5.若幂函数的图象过点,则它的单调递增区间是()A.(0,+∞) B.[0,+∞)C.(-∞,+∞) D.(-∞,0)6.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过.设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A. B.C. D.7.已知是方程的两根,且,则的值为A. B.C.或 D.8.已知函数,若函数在上有3个零点,则m的取值范围为()A. B.C. D.9.函数是上的偶函数,则的值是A. B.C. D.10.为了鼓励大家节约用水,北京市居民用水实行阶梯水价,其中每户的户年用水量与水价的关系如下表所示:分档户年用水量(立方米)水价(元/立方米)第一阶梯0-180(含)5第二阶梯181-260(含)7第三阶梯260以上9假设居住在北京的某户家庭2021年的年用水量为200m3,则该户家庭A.1800元 B.1400元C.1040元 D.1000元11.已知角的顶点与原点重合,始边与轴的非负半轴重合,若它的终边经过点,则()A. B.C. D.12.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则二、填空题(本大题共4小题,共20分)13.要在半径cm的圆形金属板上截取一块扇形板,使弧AB的长为m,那么圆心角_________.(用弧度表示)14.如图,点为锐角的终边与单位圆的交点,逆时针旋转得,逆时针旋转得逆时针旋转得,则__________,点的横坐标为_________15.如图,在四面体ABCD中,AB⊥平面BCD,△BCD是边长为6的等边三角形.若AB=4,则四面体ABCD外接球的表面积为________16.已知集合,,则集合________.三、解答题(本大题共6小题,共70分)17.已知,函数.(1)若有两个零点,且的最小值为,当时,判断函数在上的单调性,并说明理由;(2)设,记为集合中元素的最大者与最小者之差.若对,恒成立,求实数a的取值范围.18.已知函数.(1)求的定义域;(2)若函数,且对任意的,,恒成立,求实数a的取值范围.19.已知函数()是偶函数.(1)求的值;(2)设,判断并证明函数在上的单调性;(3)令若对恒成立,求实数的取值范围.20.已知.(1)若,且,求的值.(2)若,且,求的值.21.已知向量,,,求:(1),;(2)22.设全集,已知函数的定义域为集合A,函数的值域为集合B.(1)求;(2)若且,求实数a的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据所给公式,将所给条件中的温度相应代入,利用对数的运算求解即可.【详解】根据题意:的物体,放在的空气中冷却,后物体的温度是,有:,所以,故,即,故选:D.2、A【解析】利用结合斜率公式可求得实数的值.【详解】因为、、在同一直线上,则,即,解得.故选:A.3、C【解析】根据分位数的定义即可求得答案.【详解】这组数据的60%分位数是.4、C【解析】根据存在量词命题的否定是全称量词命题,选出正确选项.【详解】因为命题是存在量词命题,所以其否定是全称量词命题,即,.故选:C.5、D【解析】设幂函数为y=xa,把点(2,)代入,求出a的值,从而得到幂函数的方程,再判断幂函数的单调递增区间.【详解】设y=xa,则=2a,解得a=-2,∴y=x-2其单调递增区间为(-∞,0)故选D.【点睛】本题考查了通过待定系数法求幂函数的解析式,以及幂函数的主要性质.6、C【解析】根据长、宽、高的和不超过可直接得到关系式.【详解】长、宽、高之和不超过,.故选:.7、A【解析】∵是方程的两根,∴,∴又,∴,∵,∴又,∴,∴.选A点睛:解决三角恒等变换中给值求角问题的注意点解决“给值求角”问题时,解题的关键也是变角,即把所求角用含已知角的式子表示,然后求出适合的一个三角函数值.再根据所给的条件确定所求角的范围,最后结合该范围求得角,有时为了解题需要压缩角的取值范围8、A【解析】画出函数图像,分解因式得到,有一个解故有两个解,根据图像得到答案.【详解】画出函数的图像,如图所示:当时,即,有一个解;则有两个解,根据图像知:故选:【点睛】本题考查了函数的零点问题,画出函数图像,分解因式是解题的关键.9、C【解析】分析:由奇偶性可得,化为,从而可得结果.详解:∵是上的偶函数,则,即,即成立,∴,又∵,∴.故选C点睛:本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.10、C【解析】结合阶梯水价直接求解即可.【详解】由表可知,当用水量为180m3时,水费为当水价在第二阶段时,超出20m3,水费为则年用水量为200m3,水价为故选:C11、D【解析】利用定义法求出,再用二倍角公式即可求解.【详解】依题意,角的终边经过点,则,于是.故选:D12、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.二、填空题(本大题共4小题,共20分)13、【解析】由弧长公式变形可得:,代入计算即可.【详解】解:由题意可知:(弧度).故答案为:.14、①.##0.96②.【解析】由终边上的点得,,应用二倍角正弦公式求,根据题设描述知在的终边上,结合差角余弦公式求其余弦值即可得横坐标.【详解】由题设知:,,∴,所在角为,则,∴点的横坐标为.故答案为:,.15、【解析】由题设知,四面体ABCD的外接球也是与其同底等高的三棱柱的外接球,球心为上下底面中心连线EF的中点,所以,所以球的半径所以,外接球的表面积,所以答案应填:考点:1、空间几何体的结构特征;2、空间几何体的表面积16、【解析】根据集合的交集运算,即可求出结果.【详解】因为集合,,所以.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)函数在区间上是单调递减,理由见解析(2)【解析】(1)运用单调性的定义去判断或者根据函数本身的性质去判断即可;(2)区间与二次函数的对称轴比较,从而的情况中分类讨论,而后得到的解析式,通过函数解析式求出最小值,再解不等式即可.【小问1详解】方法1:因为,由题意得,即,所以时,即,所以,,对于任意设,所以,因为,又,所以而,所以,所以,所以函数在区间上是单调递减的.方法2:因为,由题意得,即,所以时,即,所以,,因为,所以函数图像的对称轴方程为,因为,所以,即,所以函数在上是单调递减的.【小问2详解】设,,因为函数对称轴为,①当即时,在上单调递减,,②当即时,,③当即时,,④当即时,在上单调递增,,综上可得:可知在上单调递减,在上单调递增,所以最小值为,对,恒成立,只需即可,解得,所以a的取值范围是.18、(1).(2)(2,+∞).【解析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解【详解】(1)由题可知且,所以.所以的定义域为.(2)由题易知其定义域上单调递增.所以在上的最大值为,对任意的恒成立等价于恒成立.由题得.令,则恒成立.当时,,不满足题意.当时,,解得,因为,所以舍去.当时,对称轴为,当,即时,,所以;当,即时,,无解,舍去;当,即时,,所以,舍去.综上所述,实数a的取值范围为(2,+∞).【点睛】本题考查求对数型复合函数的定义域,不等式恒成立问题.解题时注意转化与化归思想的应用19、(1)(2)单调递增函数.见解析(3)【解析】(1)由题意得,推出得,从而有,解出即可;(2)先求出函数的解析式,再根据单调性的性质即可得判断函数的单调性,再利用作差法证明即可;(3),令,换元法得在上恒成立,利用分离变量法求出函数在上的最值,从而可求出的取值范围【详解】解:(1)由是偶函数得,可得,∴,即,得,解得:;(2)由(1)可知,,,和在上单调递增,为在上的单调递增函数,证明:任取,那么,,,,,则,,,即那么,为在上的单调递增函数;(3)由(2)可知,那么,令,则,,,转化为在上恒成立,即在上恒成立,而函数和在上单调递增,则函数在上单调递增,∴,∴,故:实数的取值范围为【点睛】本题主要考查对数型函数的奇偶性与单调性的综合,考查恒成立问题,属于中档题20、(1)或;(2).【解析】(1)利用诱导公式结合化简,再解方程结合即可求解;(2)结合(1)中将已知条件化简可得,再由同角三角函数基本关系即可求解.【小问1详解】.所以,因为,则,或.【小问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东广东省通信管理局局属事业单位招聘笔试历年典型考点(频考版试卷)附带答案详解版
- 广东2024年南方医科大学南方医院招聘专业技术人员笔试历年典型考点(频考版试卷)附带答案详解
- 2024年03月重庆市西南证券股份有限公司招考笔试历年参考题库附带答案详解
- 2024年中国补虚胶囊市场调查研究报告
- 2024年特聘金融顾问服务协议书3篇
- 唐山2025年河北唐山市路北区赴高校选聘55名教师笔试历年典型考点(频考版试卷)附带答案详解
- 2025年度淋浴房产品国际市场推广合作协议3篇
- 2024年生物质锅炉购销协议
- 2025版劳动合同主体变更及员工带薪休假协议3篇
- 2025版电影剧本创作人员全权聘用合同范本3篇
- 2025蛇年春节春联对联带横批(276副)
- 2024年时事政治试题【有答案】
- 全套教学课件《工程伦理学》
- 人音版六年级上册全册音乐教案(新教材)
- 2024年认证行业法律法规及认证基础知识
- 机械原理课程设计锁梁自动成型机床切削机构
- MT 285-1992缝管锚杆
- CRAC无线电技术观摩交流大会业余无线电应急通信演练基本规则
- 消防安全重点单位档案(参考)
- 35KV降压变电所一次系统电气设计(可编辑)
- TL494组成的200W逆变器电路图
评论
0/150
提交评论