版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.下列函数中,值域为的偶函数是A. B.C. D.2.已知函数,若在上单调递增,则实数的取值范围为()A. B.C. D.3.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.4.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为14人,则样本中的中年职工人数为()A.10 B.30C.50 D.705.已知函数的零点,(),则()A. B.C. D.6.在空间直角坐标系中,点在轴上,且点到点与点的距离相等,则点坐标为()A. B.C. D.7.已知函数是定义在上的偶函数,对任意,都有,当时,,则A. B.C.1 D.8.若函数是函数(且)的反函数,且,则()A. B.C. D.9.已知点,,,且满足,若点在轴上,则等于A. B.C. D.10.已知a>0,那么2+3a+4A.23 B.C.2+23 D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知幂函数的图象过点,则______.12.当时,函数取得最大值,则___________.13.已知为三角形的边的中点,点满足,则实数的值为_______14.已知函数,若,不等式恒成立,则的取值范围是___________.15.已知集合,则集合的子集个数为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,在四棱锥中,是正方形,平面,,,,分别是,,的中点()求四棱锥的体积()求证:平面平面()在线段上确定一点,使平面,并给出证明17.已知函数.(1)求最小正周期;(2)当时,求的值域.18.如图,直三棱柱ABC﹣A1B1C1中,M,N分别为棱AC和A1B1的中点,且AB=BC(1)求证:平面BMN⊥平面ACC1A1;(2)求证:MN∥平面BCC1B119.已知函数.(1)判断在区间上的单调性,并用定义证明;(2)判断奇偶性,并求在区间上的值域.20.已知函数.(1)求函数的最小正周期及函数的对称轴方程;(2)若,求函数的单调区间和值域.21.已知函数,,g(x)与f(x)互为反函数.(1)若函数在区间内有最小值,求实数m的取值范围;(2)若函数y=h(g(x))在区间(1,2)内有唯一零点,求实数m的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】值域为的偶函数;值域为R的非奇非偶函数;值域为R的奇函数;值域为的偶函数.故选D2、C【解析】利用分段函数的单调性列出不等式组,可得实数的取值范围【详解】在上单调递增,则解得故选:C【点睛】本题考查函数单调性的应用,考查分段函数,端点值的取舍是本题的易错3、A【解析】求出函数的周期,函数的奇偶性,判断求解即可【详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A考点:三角函数的性质.4、A【解析】利用分层抽样的等比例性质,结合已知求样本中中年职工人数.【详解】由题意知,青年职工人数:中年职工人数:老年职工人数=350:250:150=7:5:3由样本中的青年职工为14人,可得中年职工人数为10故选:A5、D【解析】将函数化为,根据二次函数的性质函数的单调性,利用零点的存在性定理求出两个零点的分布,进而得出零点的取值范围,依次判断选项即可.【详解】由题意知,,则函数图象的对称轴为,所以函数在上单调递增,在上单调递减,又,,,,所以,因为,,所以,所以,故A错误;,故B错误;,故C错误;,故D正确.故选:D6、B【解析】先由题意设点的坐标为,根据空间中的两点间距离公式,列出等式,求出,即可得出结果.【详解】因为点在轴上,所以可设点的坐标为,依题意,得,解得,则点的坐标为故选:B.7、C【解析】由题意,故选C8、B【解析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.9、C【解析】由题意得,∴设点的坐标为,∵,∴,∴,解得故选:C10、D【解析】利用基本不等式求解.【详解】因为a>0,所以2+3a+4当且仅当3a=4a,即故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】结合幂函数定义,采用待定系数法可求得解析式,代入可得结果.【详解】为幂函数,可设,,解得:,,.故答案为:.【点睛】本题考查幂函数解析式和函数值的求解问题,关键是能够明确幂函数的定义,采用待定系数法求解函数解析式,属于基础题.12、##【解析】由辅助角公式,正弦函数的性质求出,,再根据两角和的正切和公式,诱导公式求.【详解】(其中,),当时,函数取得最大值∴,,即,,所以,.故答案为:.13、【解析】根据向量减法的几何意义及向量的数乘便可由得出,再由D为△ABC的边BC的中点及向量加法的平行四边形法则即可得出点D为AP的中点,从而便可得出,这样便可得出λ的值【详解】=,所以,D为△ABC的边BC中点,∴∴如图,D为AP的中点;∴,又,所以-2.故答案为-2.【点睛】本题考查向量减法的几何意义,向量的数乘运算,及向量数乘的几何意义,向量加法的平行四边形法则,共线向量基本定理,属于中档题.14、【解析】原问题等价于时,恒成立和时,恒成立,从而即可求解.【详解】解:由题意,因为,不等式恒成立,所以时,恒成立,即,所以;时,恒成立,即,令,则,由对勾函数的单调性知在上单调递增,在上单调递减,所以时,,所以;综上,.所以的取值范围是.故答案为:15、2【解析】先求出然后直接写出子集即可.【详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)见解析(3)当为线段的中点时,满足使平面【解析】(1)根据线面垂直确定高线,再根据锥体体积公式求体积(2)先寻找线线平行,根据线面平行判定定理得线面平行,最后根据面面平行判定定理得结论(3)由题意可得平面,即,取线段的中点,则有,而,根据线面垂直判定定理得平面试题解析:()解:∵平面,∴()证明:∵,分别是,的中点∴,由正方形,∴,又平面,∴平面,同理可得:,可得平面,又,∴平面平面()解:当为线段中点时,满足使平面,下面给出证明:取的中点,连接,,∵,∴四点,,,四点共面,由平面,∴,又,,∴平面,∴,又为等腰三角形,为斜边中点,∴,又,∴平面,即平面点睛:(1)探索性问题通常用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.17、(1)(2)【解析】(1)根据辅角公式可得,由此即可求出的最小正周期;(2)根据,可得,在结合正弦函数的性质,即可求出结果.【小问1详解】解:所以最小正周期为;【小问2详解】,,的值域为.18、(1)见解析;(2)见解析【解析】(1)由面面垂直的性质定理证明平面,再由面面垂直的判定定理得证面面垂直;(2)取BC中点P,连接B1P和MP,可证MN∥PB1,从而可证线面平行【详解】(1)因为M为棱AC的中点,且AB=BC,所以BM⊥AC,又因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因为BM⊂平面ABC,所以AA1⊥BM又因为AC,A1A⊂平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因为BM⊂平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中点P,连接B1P和MP,因为M、P为棱AC、BC的中点,所以MP∥AB,且MPAB,因为ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因为N为棱A1B1的中点,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四边形,所以MN∥PB1又因为MN⊄平面BCC,PB1⊂平面BCC1B1所以MN∥平面BCC1B1【点睛】本题考查证明面面垂直与线面平行,掌握它们的判定定理是解题关键.立体几何证明中,要由定理得出结论,必须满足定理的所有条件,缺一不可.有些不明显的结论需要证明,明显的结论也要列举出来,否则证明过程不完整19、(1)函数在区间上单调递增,证明见解析(2)函数为奇函数,在区间上的值域为【解析】(1)利用定义法证明函数单调性;(2)先得到定义域关于原点对称,结合得到函数为奇函数,利用第一问的单调性求出在区间上的值域.【小问1详解】在区间上单调递增,证明如下:,,且,有.因为,,且,所以,.于是,即.故在区间上单调递增.【小问2详解】的定义域为.因,所以为奇函数.由(1)得在区间上单调递增,结合奇偶性可得在区间上单调递增.又因为,,所以在区间上的值域为.20、(1)最小正周期为,对称轴方程为(2)函数在上单调递减,在上单调递增;值域为【解析】(1)先通过降幂公式化简成,再按照周期和对称轴方程进行求解;(2)求出整体的范围,再结合正弦函数的单调性求解单调区间和值域.【小问1详解】;函数的最小正周期为,函数的对称轴方程为;【小问2详解】,,时,函数单调递减,即时,函数在上单调递减;时,函数在单调递增,即时,函数在上单调递增.,函数的值域为.21、(1);(2).【解析】(1)根据二次函数的性质研究情况下的单调性和值域,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025隧道钢筋制作、绑扎承包合同
- 2025年度石材进出口贸易及仓储物流服务合同3篇
- 2025房屋拆迁工程合同范本与房建工程监理工作年终总结汇编
- 绿化种植合同范本签订步骤
- 总经理受聘合同
- 城市建设工程电梯租赁合同范本
- 专业撰写房屋买卖居间合同范本
- 2025年度饲料原料买卖合同范本(牛饲料专项)2篇
- 深圳商用房产买卖合同
- 停薪留职合同模板
- 2024年08月云南省农村信用社秋季校园招考750名工作人员笔试历年参考题库附带答案详解
- 防诈骗安全知识培训课件
- 心肺复苏课件2024
- 2024年股东股权继承转让协议3篇
- 2024-2025学年江苏省南京市高二上册期末数学检测试卷(含解析)
- 四川省名校2025届高三第二次模拟考试英语试卷含解析
- 考研有机化学重点
- 《GPU体系结构》课件2
- 三年级语文上册 期末古诗词专项训练(二)(含答案)(部编版)
- 2024年认证行业法律法规及认证基础知识
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
评论
0/150
提交评论