版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=若f(x)=2,则x的值是()A. B.±C.0或1 D.2.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确的命题是()A.①② B.②③C.③④ D.④3.若定义在R上的偶函数满足,且当时,f(x)=x,则函数y=f(x)-的零点个数是A.6个 B.4个C.3个 D.2个4.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B.C. D.5.北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是()A.249 B.C.17 D.6.曲线与直线在轴右侧的交点按横坐标从小到大依次记为,,,,,…,则等于A. B.2C.3 D.7.函数的图象与函数的图象关于直线对称,则函数的单调递减区间为A. B.C. D.8.函数,设,则有A. B.C. D.9.已知直线与直线平行且与圆:相切,则直线的方程是A. B.或C. D.或10.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则_______.12.已知关于的方程在有解,则的取值范围是________13.如图,在四面体ABCD中,AB⊥平面BCD,△BCD是边长为6的等边三角形.若AB=4,则四面体ABCD外接球的表面积为________14.若直线l在x轴上的截距为1,点到l的距离相等,则l的方程为______.15.函数的最大值为__________16.若函数在上单调递减,则实数a的取值范围为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数最大值及相应的的值;(2)求函数的单调增区间.18.如图,某市准备在道路的一侧修建一条运动比赛道,赛道的前一部分为曲线段,该曲线段是函数,时的图象,且图象的最高点为,赛道的中部分为长千米的直线跑道,且,赛道的后一部分是以为圆心的一段圆弧(1)求的值和的大小;(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,矩形的一边在道路上,一个顶点在半径上,另外一个顶点在圆弧上,且,求当“矩形草坪”的面积取最大值时的值19.已知函数.(1)当时,解不等式;(2)若不等式在上恒成立,求实数的取值范围.20.已知函数(1)求函数的最小正周期、单调区间;(2)求函数在区间上的最小值和最大值.21.设,,.(1)若,求;(2)若是的充分不必要条件,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据函数值为2,分类讨论即可.【详解】若f(x)=2,①x≤-1时,x+2=2,解得x=0(不符合,舍去);②-1<x<2时,,解得x=(符合)或x=(不符,舍去);③x≥2时,2x=2,解得x=1(不符,舍去).综上,x=.故选:A.2、D【解析】利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可【详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题故选D【点睛】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.3、B【解析】因为偶函数满足,所以的周期为2,当时,,所以当时,,函数的零点等价于函数与的交点个数,在同一坐标系中,画出的图象与的图象,如上图所示,显然的图象与的图象有4个交点.选B.点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,是中档题.根据函数零点和方程的关系进行转化是解答本题的关键4、A【解析】正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积5、C【解析】根据古典概型概率的计算公式直接计算.【详解】由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况,其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749故选:C.6、B【解析】曲线与直线在轴右侧的交点按横坐标从小到大依次记为,曲线与直线在轴右侧的交点按横坐标转化为根,解简单三角方程可得对应的横坐标分别为,,故选B.【思路点睛】本题主要考查三角函数的图象以及简单的三角方程,属于中档题.解答本题的关键是将曲线与直线在轴右侧的交点按横坐标转化为根,可得或,令取特殊值即可求得,从而可得.7、D【解析】先由函数是函数的反函数,所以,再求得,再求函数的定义域,再结合复合函数的单调性求解即可.【详解】解:由题意函数的图象与函数的图象关于直线对称知,函数是函数的反函数,所以,即,要使函数有意义,则,即,解得,设,则函数在上单调递增,在上单调递减.因为函数在定义域上为增函数,所以由复合函数的单调性性质可知,则此函数的单调递减区间是,故选D【点睛】本题考查了函数的反函数的求法及复合函数的单调性,重点考查了函数的定义域,属中档题.8、D【解析】>1,<0,0<<1,∴b<c<1,又在x∈(-∞,1)上是减函数,∴f(c)<f(b)<0,而f(a)>0,∴f(c)<f(b)<f(a).点睛:在比较幂和对数值的大小时,一般化为同底数的幂(利用指数函数性质)或同底数对数(利用对数函数性质),有时也可能化为同指数的幂(利用幂函数性质)比较大小,在不能这样转化时,可借助于中间值比较,如0或1等.把它们与中间值比较后可得出它们的大小9、D【解析】圆的圆心为,半径为,因为直线,所以,设直线的方程为,由题意得或所以,直线的方程或10、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将条件平方可得答案.【详解】因为,所以,所以故答案为:12、【解析】将原式化为,然后研究函数在上的值域即可【详解】解:由,得,令,令,因为,所以,所以,即,因为,所以函数可化为,该函数在上单调递增,所以,所以,所以,所以的取值范围是,故答案为:13、【解析】由题设知,四面体ABCD的外接球也是与其同底等高的三棱柱的外接球,球心为上下底面中心连线EF的中点,所以,所以球的半径所以,外接球的表面积,所以答案应填:考点:1、空间几何体的结构特征;2、空间几何体的表面积14、或【解析】考虑斜率不存在和存在两种情况,利用点到直线距离公式计算得到答案.【详解】显然直线轴时符合要求,此时的方程为.当直线l的斜率存在时,设直线l的斜率为k,则l的方程为,即.∵A,B到l的距离相等∴,∴,∴,∴直线l的方程为.故答案为或【点睛】本题考查了点到直线的距离公式,忽略掉斜率不存在的情况是容易犯的错误.15、【解析】利用二倍角余弦公式,把问题转化为关于的二次函数的最值问题.【详解】,又,∴函数的最大值为.故答案为:.16、【解析】利用复合函数的单调性,即可得到答案;【详解】在定义域内始终单调递减,原函数要单调递减时,,,,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)时,;(2).【解析】(1)利用倍角公式对函数进行化简得:,进而得到函数的最大值及对应的的值;(2)将代入的单调递增区间,即可得答案;【详解】解:(1),当,即时,;(2)由题意得:,函数的单调增区间为.【点睛】本题考查三角恒等变换、正弦函数的最值和单调区间,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.18、(1),;(2).【解析】(1)由题意可得,故,从而可得曲线段的解析式为,令x=0可得,根据,得,因此(2)结合题意可得当“矩形草坪”的面积最大时,点在弧上,由条件可得“矩形草坪”的面积为,然后根据的范围可得当时,取得最大值试题解析:(1)由条件得.∴.∴曲线段的解析式为.当时,.又,∴,∴.(2)由(1),可知.又易知当“矩形草坪”的面积最大时,点在弧上,故.设,,“矩形草坪”的面积为.∵,∴,故当,即时,取得最大值19、(1);(2).【解析】(1)根据对数函数的定义域及单调性求解即可;(2)由题意原问题转化为在上恒成立,分与两种情况分类讨论,求出最值解不等式即可.【详解】(1)时,函数定义域为解得不等式的解集为(2)设,由题意知,解得,在上恒成立在上恒成立令,的图象是开口向下,对称轴方程为的抛物线.①时,上恒成立等价于解得,这与矛盾.②当时,在上恒成立等价于解得或又综上所述,实数的取值范围是【点睛】关键点点睛:由题意转化为在上恒成立,分类讨论去掉对数符号,转化为二次函数在上最大值或最小值,是解题的关键所在,属于中档题.20、(1),增区间是,减区间是(2),【解析】(1)根据余弦函数的图象与性质,求出f(x)的最小正周期和单调增、减区间;(2)求出x∈[,]时2x的取值范围,从而求得f(x)的最大最小值【详解】(1)函数f(x)cos(2x)中,它的最小正周期为Tπ,令﹣π+2kπ≤2x2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调增区间为[kπ,kπ],k∈Z;令2kπ≤2xπ+2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调减区间为[kπ,kπ],k∈Z;(2)x∈[,]时,2x≤π,所以2x;令2x,解得x,此时f(x)取得最小值为f()()=﹣1;令2x0,解得x,此时f(x)取得最大值为f()1【点睛】本题考查了三角函数的图象与性质的应用问题,熟记单调区间是关键,是基础题21、(1)或;(2).【解析】(1)先得出集合A,利用并集定义求出,再由补集定义即可求出;(2)由题可得集合是集合的真子集,则可列出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年《春节的习俗》6年级作文
- 航天火箭公司评估报告(上网)
- 人民日报评论网络暴力素材-人民日报评治理网络暴力
- 赞美花园的诗句
- 七年级下册历史论述题专项训练(解析版)
- 儿童教育平台广告投放合同(2篇)
- 短期厂房租赁合同书范本
- 房产租赁合同书样书
- 2025电子设备安装合同书
- 2025汽车买卖合同模板
- 数据维护方案
- 大屏实施方案
- 湖北省部分学校2023-2024学年高一上学期期末考试数学试题(解析版)
- 工程建设监理公司薪酬管理制度
- 软件测试人员述职报告
- 广东省佛山市2023-2024学年高二上学期期末中教学质量检测英语试题【含答案解析】
- 器械相关感染预防课件
- (完整word)工程造价咨询公司管理制度
- 2024年度医院影像科护理工作计划
- 肿瘤学肿瘤发生发展和治疗的研究
- 平板车悬挂液压系统设计课件
评论
0/150
提交评论