版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为()A. B.C. D.2.若三点在同一直线上,则实数等于A. B.11C. D.33.函数的图象如图所示,则()A. B.C. D.4.已知函数的定义域为R,是偶函数,,在上单调递增,则不等式的解集为()A. B.C D.5.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30° B.45°C.60° D.90°6.下列各个关系式中,正确的是()A.={0}B.C.{3,5}≠{5,3}D.{1}{x|x2=x}7.若,则()A B.C. D.8.已知的三个顶点A,B,C及半面内的一点P,若,则点P与的位置关系是A.点P在内部 B.点P在外部C.点P在线段AC上 D.点P在直线AB上9.化简A. B.C.1 D.10.四边形中,,且,则四边形是()A.平行四边形 B.菱形C.矩形 D.正方形二、填空题:本大题共6小题,每小题5分,共30分。11.《九章算术》是我国古代内容极为丰富的数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”其意思为:“有一块扇形的田,弧长为30步,其所在圆的直径为16步,问这块田的面积是多少平方步?”该问题的答案为___________平方步.12.已知函数定义域是________(结果用集合表示)13.已知扇形的弧长为,且半径为,则扇形的面积是__________.14.在中,,BC边上的高等于,则______________15.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形的三条边长分别为、、,则三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为______16.已知直线,则与间的距离为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=(1)若f(2)=a,求a的值;(2)当a=2时,若对任意互不相等实数x1,x2∈(m,m+4),都有>0成立,求实数m的取值范围;(3)判断函数g(x)=f(x)-x-2a(<a<0)在R上的零点的个数,并说明理由18.计算:(1).(2)19.已知的内角所对的边分别为,(1)求的值;(2)若,求面积20.计算下列各题:(1);(2).21.(1)已知,求的值.(2)已知,是第四象限角,,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据直观图的面积与原图面积的关系为,计算得到答案.【详解】直观图的面积,设原图面积,则由,得.故选:C.【点睛】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.2、D【解析】由题意得:解得故选3、C【解析】根据正弦型函数图象与性质,即可求解.【详解】由图可知:,所以,故,又,可求得,,由可得故选:C.4、A【解析】由题意判断出函数关于对称,结合函数的对称性与单调性求解不等式.【详解】∵是偶函数,∴函数关于对称,∴,又∵在上单调递增,∴在单调递减,∴可化为,解得,∴不等式解集为.故选:A5、C【解析】分别取AC.PC中点O.E.连OE,DE;则OE//PA,所以(或其补角)就是PA与BD所成的角;因PD⊥平面ABCD,所以PD⊥DC,PD⊥AD.设正方形ABCD边长为2,则PA=PC=BD=所以OD=OE=DE=,是正三角形,,故选C6、D【解析】由空集的定义知={0}不正确,A不正确;集合表示有理数集,而不是有理数,所以B不正确;由集合元素的无序性知{3,5}={5,3},所以C不正确;{x|x2=x}={0,1},所以{1}{0,1},所以D正确.故选D.7、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论8、C【解析】由平面向量的加减运算得:,所以:,由向量共线得:即点P在线段AC上,得解【详解】因为:,所以:,所以:,即点P在线段AC上,故选C.【点睛】本题考查了平面向量的加减运算及向量共线,属简单题.9、D【解析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【详解】化简分母得.故原式等于.故选D【点睛】本题主要考查了两角和与差公式以及倍角公式.属于基础题10、C【解析】由于,故四边形是平行四边形,根据向量加法和减法的几何意义可知,该平行四边形的对角线相等,故为矩形.二、填空题:本大题共6小题,每小题5分,共30分。11、120【解析】利用扇形的面积公式求解.【详解】由题意得:扇形弧长为30,半径为8,所以扇形的面积为:,故答案为:12012、【解析】根据对数函数的真数大于0求解即可.【详解】函数有意义,则,解得,所以函数的定义域为,故答案为:13、##【解析】由扇形面积公式可直接求得结果.【详解】扇形面积.故答案为:.14、.【解析】设边上的高为,则,求出,.再利用余弦定理求出.【详解】设边上的高为,则,所以,由余弦定理,知故答案为【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平,属于基础题.15、【解析】计算得出,利用海伦—秦九韶公式可得出,利用基本不等式可求得的最大值.【详解】,所以,.当且仅当时,等号成立,且此时三边可以构成三角形.因此,该三角形面积的最大值为.故答案为:.16、【解析】根据平行线间距离直接计算.【详解】由已知可得两直线互相平行,故,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)个零点,理由见解析.【解析】(1)分类讨论求出f(2),代入f(2)=a,解方程可得;(2)a=2时,求出分段函数的增区间;“对任意互不相等的实数x1,x2∈(m,m+4),都有0成立”⇔f(x)在(m,m+4)上是增函数,根据子集关系列式可得m的范围;(3)按照x≥a和x<a这2种情况分别讨论零点个数【详解】解:(1)因为f(2)=a,当a≤2时,4-2(a+1)+a=a,解得a=1符合;当a<2时,-4+2(a+1)-a=a,此式无解;综上可得:a=1(2)当a=2时,f(x)=,∴f(x)的单调增区间为(-∞,)和(2,+∞),又由已知可得f(x)在(m,m+4)上单调递增,所以m+4≤,或m≥2,解得m≤-或m≥2,∴实数m的取值范围是(-∞,-]∪[2,+∞);(3)由题意得g(x)=①当x≥a时,对称轴为x=,因为-,所以f(a)=a2-a2-2a-a=-3a>0,∵-a=>a,∴f()=-=-<0,由二次函数可知,g(x)在区间(a,)和区间(,+∞)各有一个零点;②当x<a时,对称轴为x=>a,函数g(x)在区间(-∞,a)上单调递增且f()=0,所以函数在区间(-∞,a)内有一个零点综上函数g(x)=f(x)-x-2a(-<a<0)在R上有3个零点【点睛】本题考查了分段函数单调性的应用及函数零点问题,考查了分类讨论思想的运用,属于难题18、(1)20(2)-2【解析】根据指数运算公式以及对数运算公式即可求解。【详解】(1)=(2)=【点睛】本题考查指数与对数的运算,以及计算能力,(1)根据指数幂的运算法则求解即可。(2)根据对数运算的性质求解即可,属于基础题。19、(1);(2)【解析】(1)由正弦定理求解即可;(2)由余弦定理求得则面积可求【详解】(1)由正弦定理得故;(2),由余弦定理,,解得因此,【点睛】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东广东省通信管理局局属事业单位招聘笔试历年典型考点(频考版试卷)附带答案详解版
- 广东2024年南方医科大学南方医院招聘专业技术人员笔试历年典型考点(频考版试卷)附带答案详解
- 2024年03月重庆市西南证券股份有限公司招考笔试历年参考题库附带答案详解
- 2024年中国补虚胶囊市场调查研究报告
- 2024年特聘金融顾问服务协议书3篇
- 唐山2025年河北唐山市路北区赴高校选聘55名教师笔试历年典型考点(频考版试卷)附带答案详解
- 2025年度淋浴房产品国际市场推广合作协议3篇
- 2024年生物质锅炉购销协议
- 2025版劳动合同主体变更及员工带薪休假协议3篇
- 2025版电影剧本创作人员全权聘用合同范本3篇
- 2025蛇年春节春联对联带横批(276副)
- 2024年时事政治试题【有答案】
- 全套教学课件《工程伦理学》
- 人音版六年级上册全册音乐教案(新教材)
- 2024年认证行业法律法规及认证基础知识
- 机械原理课程设计锁梁自动成型机床切削机构
- MT 285-1992缝管锚杆
- CRAC无线电技术观摩交流大会业余无线电应急通信演练基本规则
- 消防安全重点单位档案(参考)
- 35KV降压变电所一次系统电气设计(可编辑)
- TL494组成的200W逆变器电路图
评论
0/150
提交评论