版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.已知,,,则()A. B.C. D.2.设实数满足,函数的最小值为()A. B.C. D.63.由直线上的点向圆引切线,则切线长的最小值为()A. B.C. D.4.已知,设函数,的最大值为A,最小值为B,那么A+B的值为()A.4042 B.2021C.2020 D.20245.直线的倾斜角为()A. B.30°C.60° D.120°6.是定义在上的函数,,且在上递减,下列不等式一定成立的是A. B.C. D.7.设为的边的中点,为内一点,且满足,则()A. B.C. D.8.已知,条件:,条件:,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知,则的最大值为()A. B.C.0 D.210.函数是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数11.设分别是x轴和圆:(x-2)2+(y-3)2=1上的动点,且点A(0,3),则的最小值为()A. B.C. D.12.直线的倾斜角是A. B.C. D.二、填空题(本大题共4小题,共20分)13.如图,已知△和△有一条边在同一条直线上,,,,在边上有个不同的点F,G,则的值为______14.已知,则_________15.已知定义在上的偶函数,当时,,则________16.已知,函数在上单调递增,则的取值范围是__三、解答题(本大题共6小题,共70分)17.已知函数.(1)求的最小正周期和最大值;(2)讨论在上的单调性.18.已知,.若,求的取值范围.19.已知函数.(1)判断在上的单调性,并证明你的结论;(2)是否存在,使得是奇函数?若存在,求出所有的值;若不存在,请说明理由.20.已知函数在区间上有最大值,最小值,设.(1)求值;(2)若不等式在时恒成立,求实数的取值范围.21.计算:(1);(2)已知,求的值22.已知.(1)在直角坐标系中用“五点画图法”画出一个周期内的图象.(要求列表、描点)(2)求函数的最小正周期、对称中心、对称轴方程.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】分析】由指数函数和对数函数单调性,结合临界值可确定大小关系.【详解】,.故选:B.2、A【解析】将函数变形为,再根据基本不等式求解即可得答案.详解】解:由题意,所以,所以,当且仅当,即时等号成立,所以函数的最小值为.故选:A【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方3、B【解析】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,求出m,由勾股定理可求切线长的最小值【详解】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,由点到直线的距离公式得m==4,由勾股定理求得切线长的最小值为=故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理的应用.解题的关键是理解要使切线长最小,必须直线y=x+2上的点到圆心的距离最小4、D【解析】由已知得,令,则,由的单调性可求出最大值和最小值的和为,即可求解.【详解】函数令,∴,又∵在,时单调递减函数;∴最大值和最小值的和为,函数的最大值为,最小值为;则;故选:5、C【解析】根据直线的斜率即可得倾斜角.【详解】因为直线的斜率为,所以直线的倾斜角为满足,即故选:C.6、B【解析】对于A,由为偶函数可得,又,由及在上为减函数得,故A错;对于B,因同理可得,故B对;对于C,因无法比较大小,故C错;对于D,取,则;取,则,故与大小关系不确定,故D错,综上,选B点睛:对于奇函数或偶函数,如果我们知道其一侧的单调性,那么我们可以知道另一侧的单调性,解题时注意转化7、C【解析】根据,确定点的位置;再根据面积公式,即可求得结果.【详解】如图取得点,使得四边形为平行四边形,,故选:C.【点睛】本题考查平面向量的基本定理,以及三角形的面积公式,属综合中档题.8、C【解析】分别求两个命题下的集合,再根据集合关系判断选项.【详解】,则,,则,因为,所以是充分必要条件.故选:C9、C【解析】把所求代数式变形,转化成,再对其中部分以基本不等式求最值即可解决.【详解】时,(当且仅当时等号成立)则,即的最大值为0.故选:C10、A【解析】由题可得,根据正弦函数的性质即得.【详解】∵函数,∴函数为最小正周期为的奇函数.故选:A.11、B【解析】取点A关于x轴的对称点C(0,-3),得到,最小值为.故答案为B.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值12、B【解析】,斜率为,故倾斜角为.二、填空题(本大题共4小题,共20分)13、16【解析】由题意易知:△和△为全等的等腰直角三角形,斜边长为,,故答案为16点睛:平面向量数量积类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cosθ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.本题就是利用几何意义处理的.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.14、【解析】两边同时取以15为底的对数,然后根据对数性质化简即可.【详解】因为所以,所以,故答案为:15、6【解析】利用函数是偶函数,,代入求值.【详解】是偶函数,.故答案6【点睛】本题考查利用函数的奇偶性求值,意在考查转化与变形,属于简单题型.16、【解析】本题已知函数的单调区间,求参数的取值范围,难度中等.由,得,又函数在上单调递增,所以,即,注意到,即,所以取,得考点:函数的图象与性质【方法点晴】已知函数为单调递增函数,可得变量的取值范围,其必包含区间,从而可得参数的取值范围,本题还需挖掘参数的隐含范围,即函数在上单调递增,可知,因此,综合题三、解答题(本大题共6小题,共70分)17、(1)最小正周期,最大值为;(2)在单调递增,在单调递减.【解析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得的最小正周期和最大值;(2)根据,利用正弦函数的单调性,分类讨论求得的单调性.【详解】(1),则的最小正周期为,当,即时,取得最大值为;(2)当时,,则当,即时,为增函数;当时,即时,为减函数,在单调递增,在单调递减.【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.18、.【解析】利用对函数数的性质化简,利用一元二次不等式的解法,讨论,,三种情况,分别分析集合,再结合,解得的取值范围【详解】由,得,解得,即,由,得,当时,是空集,不满足,不符合题意,舍去;当时,,不满足,不符合题意,舍去;当时,解得,因为,所以的取值范围是.19、(1)减函数,证明见解析;(2),理由见解析【解析】(1)由单调性定义判断;(2)根据奇函数的性质由求得,然后再由奇函数定义验证【详解】(1)是上的减函数设,则,所以,,即,,所以,所以是上的减函数(2)若是奇函数,则,,时,,所以,所以为奇函数所以时,函数为奇函数20、(1);(2).【解析】(1)利用二次函数单调性进行求解即可;(2)利用换元法、构造函数法,结合二次函数的性质进行求解即可.【小问1详解】当时,函数的对称轴为:,因此函数当时,单调递增,故所以;【小问2详解】由(1)知,不等式,可化为:即,令,,令,.21、(1)20;(2)【解析】(1)利用指对数的运算化简(2)利用三角函数诱导公式,以及弦化切的运算【详解】(1)对原式进行计算如下:(2)对原式进行化简如下:将代入上式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025隧道钢筋制作、绑扎承包合同
- 2025年度石材进出口贸易及仓储物流服务合同3篇
- 2025房屋拆迁工程合同范本与房建工程监理工作年终总结汇编
- 绿化种植合同范本签订步骤
- 总经理受聘合同
- 城市建设工程电梯租赁合同范本
- 专业撰写房屋买卖居间合同范本
- 2025年度饲料原料买卖合同范本(牛饲料专项)2篇
- 深圳商用房产买卖合同
- 停薪留职合同模板
- 2023年上海崇明区区管企业招聘笔试参考题库附带答案详解
- 清华大学考生自述
- 甘肃社火100首歌词
- GB/T 2315-2000电力金具标称破坏载荷系列及连接型式尺寸
- 腹主动脉瘤的护理查房
- 内部往来转账通知单
- 商业银行高管问责制度
- 企业员工培训之风险管理与防范对策
- 食材配送后续服务方案
- 铸造工厂设备管理(共21页)
- 农产品收购台账(登记经营单位及个体经营者投售的农产品
评论
0/150
提交评论