版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,条件:,条件:,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.函数的部分图象如图所示,将函数的图象向左平移个单位长度后得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的最小正周期为C.函数的图象的对称轴为直线D.函数的单调递增区间为3.已知正实数x,y,z,满足,则()A. B.C. D.4.已知命题p:∃n∈N,2n>2021.那么A.∀n∈N,2n≤2021 B.∀n∈NC.∃n∈N,2n≤2021 D.∃n∈N5.某几何体的三视图如图所示,则该几何体的表面积是A. B.C. D.6.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若.则()A. B.C.2 D.7.已知函数,且在内有且仅有两个不同的零点,则实数的取值范围是A. B.C. D.8.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆-嫦娥五号返回:舱之所以能达到如此髙的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60m/s,则至少还需要“打水漂”的次数为()(参考数据:取lg2≈0.301,lg3≈0.477)A.4 B.5C.6 D.79.当时,的最大值为()A. B.C. D.10.若角,均为锐角,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在上单调递减,则实数a的取值范围为___________.12.设函数则的值为________13.在单位圆中,已知角的终边与单位圆的交点为,则______14.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________15.若,则_________.16.若函数是奇函数,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象恒过定点A,且点A又在函数的图象上.(1)求实数a的值;(2)若函数有两个零点,求实数b的取值范围.18.(1)求值:;(2)已知,,试用表示.19.已知函数(为常数)是定义在上的奇函数.(1)求函数的解析式;(2)判断函数的单调性,并用定义证明;(3)若函数满足,求实数的取值范围.20.已知函数(a>0且)是偶函数,函数(a>0且)(1)求b的值;(2)若函数有零点,求a的取值范围;(3)当a=2时,若,使得恒成立,求实数m的取值范围21.已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分别求两个命题下的集合,再根据集合关系判断选项.【详解】,则,,则,因为,所以是充分必要条件.故选:C2、D【解析】根据图象得到函数解析式,将函数的图象向左平移个单位长度后得到的图象,可得解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论.【详解】由图象可知,,∴,则.将点的坐标代入中,整理得,∴,即;,∴,∴.∵将函数的图象向左平移个单位长度后得到的图象,∴.,∴既不是奇函数也不是偶函数,故A错误;∴的最小正周期,故B不正确.令,解得,则函数图像的对称轴为直线.故C错误;由,可得,∴函数的单调递增区间为.故D正确;故选:D.【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.3、A【解析】根据指数函数和对数函数的图像比较大小即可.【详解】令,则,,,由图可知.4、A【解析】根据含有一个量词命题否定的定义,即可得答案.【详解】命题p:∃n∈N,2n>2021的否定¬p为:∀n∈N,故选:A5、A【解析】由三视图可知几何体是一个底面为梯形的棱柱,再求几何体的表面积得解.【详解】由三视图可知几何体是一个底面为直角梯形的棱柱,梯形的上底为1,下底为2,高为2,棱柱的高为2.由题可计算得梯形的另外一个腰长为.所以该几何体的表面积=.故答案为A【点睛】本题主要考查三视图找原图,考查几何体的表面积的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.6、A【解析】由已知、同角三角函数关系、辅助角公式及诱导公式可得解.【详解】由得,∴.故选:A.7、C【解析】由,即,分别作出函数和的图象如图,由图象可知表示过定点的直线,当过时,此时两个函数有两个交点,当过时,此时两个函数有一个交点,所以当时,两个函数有两个交点,所以在内有且仅有两个不同的零点,实数的取值范围是,故选C.8、C【解析】设石片第n次“打水漂”时的速率为vn,再根据题设列不等式求解即可.【详解】设石片第n次“打水漂”时的速率为vn,则vn=.由,得,则,所以,故,又,所以至少需要“打水漂”的次数为6.故选:C9、B【解析】利用基本不等式直接求解.【详解】,,又,当且仅当,即时等号成立,所以的最大值为故选:B10、B【解析】根据给定条件,利用同角公式及差角的正弦公式计算作答.【详解】角,均为锐角,即,而,则,又,则,所以,.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用复合函数的单调性,即可得到答案;【详解】在定义域内始终单调递减,原函数要单调递减时,,,,故答案为:12、【解析】直接利用分段函数解析式,先求出的值,从而可得的值.【详解】因为函数,所以,则,故答案为.【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.13、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:14、##0.5【解析】根据题意,用表示出与,求出λ、μ的值即可【详解】设,则=(1﹣k)+k=,∴故答案为:15、##【解析】依题意利用诱导公式及二倍角公式计算可得;【详解】解:因为,所以.故答案为:.16、【解析】根据题意,得到,即可求解.【详解】因为是奇函数,可得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由函数图象的平移变换可得点A坐标,然后代入函数可解;(2)将函数零点个数问题转化为两个函数图象的交点个数问题,作图可解.【小问1详解】函数的图象可由指数函数的图象,向右平移2个单位长度,再向上平移1个单位长度得到.因为函数的图象过定点,故函数的图象恒过定点,又因为A点在图象上,则∴解得【小问2详解】,若函数有两个零点,则方程有两个不等实根,令,,则它们的函数图象有两个交点,由图可知:,故b的取值范围为.18、(1)(2)【解析】(1)先将小数转化为分数并约简,然后各式化成指数幂的形式,再利用指数运算法则即可化简求值.(2)先利用对数的换底公式,以及相关的运算公式将转化为以表示的式子,然后换成m,n即可.【详解】解:(1)原式(2)原式【点睛】主要考查指数幂运算公式以及对数的运算公式的应用,属于基础题.19、(1)(2)在上单调递减,证明见解析(3)【解析】(1)依题意可得,即可得到方程,解得即可;(2)首先判断函数的单调性,再根据定义法证明,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(3)根据函数的奇偶性与单调性将函数不等式转化为自变量的不等式,再解得即可;【小问1详解】解:因为是定义在上的奇函数,所以,即,即,所以,即;解得,所以【小问2详解】解:函数是上的减函数证明:在上任取,,设,因为,所以,则,所以即所以在上单调递减【小问3详解】解:因为是定义在上奇函数所以可化为又在上单调递减,所以解得20、(1)(2)(3)【解析】(1)根据f(x)为偶函数,由f(-x)=-f(x),即对恒成立求解;(2)由有零点,转化为有解,令,转化为函数y=p(x)图象与直线y=a有交点求解;(3)根据,使得成立,由求解.【小问1详解】解:因f(x)为偶函数,所以,都有f(-x)=-f(x),即对恒成立,对恒成立,对恒成立,所以【小问2详解】因为有零点即有解,即有解令,则函数y=p(x)图象与直线y=a有交点,当0<a<1时,无解;当a>1时,在上单调递减,且,所以在上单调递减,值域为由有解,可得a>0,此时a>1,综上可知,a的取值范围是;【小问3详解】,当时,,由(2)知,当且仅当时取等号,所以的最小值为1,因为,使得成立,所有,即对任意的恒成立,设,所以当t>1时,恒成立,即,对t>1恒成立,设函数在单调递减,所以,所以m≥0,即实数m的取值范围为21、(1)(2)【解析】(1)根据表格提供的数据画出函数图象,求出、和、的值,写出的解析式即可;(2)由函数的最小正周期求出的值,再利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度淋浴房产品国际市场推广合作协议3篇
- 2024年生物质锅炉购销协议
- 2025版劳动合同主体变更及员工带薪休假协议3篇
- 2025版电影剧本创作人员全权聘用合同范本3篇
- 2025版家用空调销售安装与绿色环保认证合同3篇
- 2025年度海洋工程建设项目施工合同管理细则3篇
- 2025年度城市废弃物资源化利用项目合作协议2篇
- 2024年电子商务平台数据采集合作协议3篇
- 2025版工业净化车间空气净化系统设计与安装服务合同3篇
- 2025至2030年中国自行式铝合金升降机行业投资前景及策略咨询研究报告
- 2025蛇年春节春联对联带横批(276副)
- 2024年时事政治试题【有答案】
- 全套教学课件《工程伦理学》
- 人音版六年级上册全册音乐教案(新教材)
- 2024年认证行业法律法规及认证基础知识
- 机械原理课程设计锁梁自动成型机床切削机构
- MT 285-1992缝管锚杆
- CRAC无线电技术观摩交流大会业余无线电应急通信演练基本规则
- 消防安全重点单位档案(参考)
- 35KV降压变电所一次系统电气设计(可编辑)
- TL494组成的200W逆变器电路图
评论
0/150
提交评论