2022-2023学年四川省广安市武胜烈面中学数学高一上期末达标检测模拟试题含解析_第1页
2022-2023学年四川省广安市武胜烈面中学数学高一上期末达标检测模拟试题含解析_第2页
2022-2023学年四川省广安市武胜烈面中学数学高一上期末达标检测模拟试题含解析_第3页
2022-2023学年四川省广安市武胜烈面中学数学高一上期末达标检测模拟试题含解析_第4页
2022-2023学年四川省广安市武胜烈面中学数学高一上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,函数,若有两个零点,则m的取值范围是()A. B.C. D.2.已知函数的图象如图所示,则函数与在同一直角坐标系中的图象是A. B.C. D.3.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是A. B.C. D.4.下列四个函数,以为最小正周期,且在区间上单调递减的是()A. B.C. D.5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A.若,,则B.若,,,则C.若,,则D.若,,,则6.函数满足:,已知函数与的图象共有4个交点,交点坐标分别为,,,,则:A. B.C. D.7.如图正方体,棱长为1,为中点,为线段上的动点,过的平面截该正方体所得的截面记为,则下列命题正确的是当时,为四边形;当时,为等腰梯形;当时,与交点R满足;当时,为六边形;当时,的面积为A. B.C. D.8.若幂函数y=f(x)经过点(3,),则此函数在定义域上是A.偶函数 B.奇函数C.增函数 D.减函数9.定义域为的函数满足,当时,,若时,对任意的都有成立,则实数的取值范围是()A. B.C. D.10.已知函数f(x)是偶函数,且f(x)在上是增函数,若,则不等式的解集为()A.{x|x>2} B.C.{或x>2} D.{或x>2}11.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法,数学家拉普拉斯称赞为“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,,设,则所在的区间为()A. B.C. D.12.“”的一个充分不必要条件是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___14.以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体的表面积为__________15.已知样本9,10,11,,的平均数是10,标准差是,则______,______.16.已知扇形的圆心角为,其弧长是其半径的2倍,则__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,,.(1)若函数与的图象的一个交点的横坐标为2,求a;(2)若,求证:.18.已知集合,或(1)当时,求;(2)若,且“”是“”的充分不必要条件,求实数a的取值范围19.已知函数,(1)求的单调递增区间.(2)求在区间上的最大、最小值,并求出取得最值时的值.20.已知角的终边经过点(1)求值;(2)求的值21.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB122.已知二次函数满足,且.(1)求函数在区间上的值域;(2)当时,函数与的图像没有公共点,求实数的取值范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】存在两个零点,等价于与的图像有两个交点,数形结合求解.【详解】存在两个零点,等价于与的图像有两个交点,在同一直角坐标系中绘制两个函数的图像:由图可知,当直线在处的函数值小于等于1,即可保证图像有两个交点,故:,解得:故选:A.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.2、C【解析】根据幂函数的图象和性质,可得a∈(0,1),再由指数函数和对数函数的图象和性质,可得答案【详解】由已知中函数y=xa(a∈R)的图象可知:a∈(0,1),故函数y=a﹣x为增函数与y=logax为减函数,故选C【点睛】本题考查知识点是幂函数的图象和性质,指数函数和对数函数的图象和性质,难度不大,属于基础题3、C【解析】设出函数的解析式,根据幂函数y=f(x)的图象过点(4,2),构造方程求出指数的值,再结合函数的解析式研究其性质即可得到图象【详解】设幂函数的解析式为y=xa,∵幂函数y=f(x)的图象过点(4,2),∴2=4a,解得a=∴,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y=x的上方.对照选项故选C【点睛】本题考查的知识点是函数解析式的求解及幂函数图象及其与指数的关系,其中对于已经知道函数类型求解析式的问题,要使用待定系数法4、A【解析】先判断各函数最小正周期,再确定各函数在区间上单调性,即可选择判断.【详解】最小正周期为,在区间上单调递减;最小正周期为,在区间上单调递减;最小正周期为,在区间上单调递增;最小正周期为,在区间上单调递增;故选:A5、C【解析】根据空间中直线与平面,平面与平面的位置关系即得。【详解】A.因为垂直于同一平面的两个平面可能平行或相交,不能确定两平面之间是平行关系,故不正确;B.若,,,则或相交,故不正确;C.由垂直同一条直线的两个平面的关系判断,正确;D.若,,,则或相交,故不正确.故选:C【点睛】本题考查空间直线和平面,平面和平面的位置关系,考查学生的空间想象能力。6、C【解析】函数的图象和的图象都关于(0,2)对称,从而可知4个交点两两关于点(0,2)对称,即可求出的值【详解】因为函数满足:,所以的图象关于(0,2)对称,函数,由于函数的图象关于(0,0)对称,故的图象也关于(0,2)对称,故.故答案为C.【点睛】若函数满足,则函数的图象关于点对称7、D【解析】由已知根据的不同取值,分别作出不同情况下的截面图形,利用数形结合思想能求出结果【详解】当时,如图,是四边形,故正确当时,如图,为等腰梯形,正确;当时,如图,由三角形与三角形相似可得,由三角形与三角形相似可得,,正确当时,如图是五边形,不正确;当时,如图是菱形,面积为,正确,正确的命题为,故选D【点睛】本题主要考查正方体的截面,意在考查空间想象能力,解题时要认真审题,注意数形结合思想的合理运用,是中档题8、D【解析】幂函数是经过点,设幂函数为,将点代入得到此时函数定义域上是减函数,故选D9、B【解析】由可求解出和时,的解析式,从而得到在上的最小值,从而将不等式转化为对恒成立,利用分离变量法可将问题转化为,利用二次函数单调性求得在上的最大值,从而得到,进而求得结果.【详解】当时,时,当时,,时,时,,即对恒成立即:对恒成立令,,,解得:故选:B10、C【解析】利用函数的奇偶性和单调性将不等式等价为,进而可求得结果.详解】依题意,不等式,又在上是增函数,所以,即或,解得或.故选:C.11、C【解析】利用对数的运算性质求出,由此可得答案.【详解】,所以.故选:C12、D【解析】利用充分条件,必要条件的定义判断即得.【详解】由,可得,所以是的充要条件;所以是既不充分也不必要条件;所以是的必要不充分条件;所以是的充分不必要条件.故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、x+y-5=0或2x-3y=0【解析】当直线经过原点时,在两坐标轴上的截距相等,可得其方程为2x﹣3y=0;当直线不经过原点时,可得它的斜率为﹣1,由此设出直线方程并代入P的坐标,可求出其方程为x+y﹣5=0,最后加以综合即可得到答案【详解】当直线经过原点时,设方程为y=kx,∵直线经过点P(3,2),∴2=3k,解之得k,此时的直线方程为yx,即2x﹣3y=0;当直线不经过原点时,设方程为x+y+c=0,将点P(3,2)代入,得3+2+c=0,解之得c=﹣5,此时的直线方程为x+y﹣5=0综上所述,满足条件的直线方程为:2x﹣3y=0或x+y﹣5=0故答案为:x+y-5=0或2x-3y=0【点睛】本题给出直线经过定点且在两个轴上的截距相等,求直线的方程.着重考查了直线的基本量与基本形式等知识,属于基础题14、【解析】以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体为圆锥,圆锥的底面半径,母线长,该几何体的表面积为:.故答案为15、①.20②.96【解析】先由平均数的公式列出x+y=20,然后根据方差的公式列方程,求出x和y的值即可求出xy的值.【详解】根据平均数及方差公式,可得:化简得:,,或则,故答案为:20;96【点睛】本题主要考查了平均数和方等概念,以及解方程组,属于容易题.16、-1【解析】由已知得,所以则,故答案.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)证明见解析【解析】(1)根据题意,分析可得,变形解可得答案;(2)根据题意,设,结合二次函数的性质分析可得,当时,恒成立,即可得结论【小问1详解】根据题意,若函数与的图象的一个交点的横坐标为2,则,变形可得或,解可得;无解;故;【小问2详解】证明:设,当时,,其对称轴为,又由,则其对称轴,又由,在区间,上为增函数,则,当时,,开口向上,当时,,必有恒成立,综合可得:当是,恒成立,即恒成立18、(1)(2)【解析】(1)首先得到集合,再根据交集的定义计算可得;(2)首先求出集合的补集,依题意可得是的真子集,即可得到不等式组,解得即可;【小问1详解】解:当时,,或,∴【小问2详解】解:∵或,∴,∵“”是“”的充分不必要条件,∴是的真子集,∵,∴,∴,∴,故实数的取值范围为19、(1);(2)或时,当时【解析】分析:(1)先利用辅助角公式化简函数f(x),再利用复合函数的单调性性质求的单调递增区间.(2)利用不等式的性质和三角函数的图像和性质求在区间上的最大、最小值,并求出取得最值时的值.详解:(1),由得,∴的单调递增区间为(2)当时,当或,即或时,当即时点睛:(1)本题主要考查三角函数的单调性和区间上的最值,意在考查学生对这些基础知识的掌握水平和数形结合的思想方法.(2)对于复合函数的问题自然是利用复合函数的性质解答,求复合函数的最值,一般从复合函数的定义域入手,结合三角函数的图像一步一步地推出函数的最值.20、(1),,;(2)【解析】(1)直接利用三角函数的坐标定义求解;(2)化简,即得解.【小问1详解】解:,有,,;【小问2详解】解:,将代入,可得21、(1)证明详见解析;(2)证明详见解析.【解析】(1)通过证明,来证得平面.(2)通过证明平面,来证得平面平面.【详解】(1)由于分别是的中点,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论