![山东省青岛市崂山区第二中学2023届数学高一上期末考试模拟试题含解析_第1页](http://file4.renrendoc.com/view/157934f0c5d94f36f33171f70ceb1f3a/157934f0c5d94f36f33171f70ceb1f3a1.gif)
![山东省青岛市崂山区第二中学2023届数学高一上期末考试模拟试题含解析_第2页](http://file4.renrendoc.com/view/157934f0c5d94f36f33171f70ceb1f3a/157934f0c5d94f36f33171f70ceb1f3a2.gif)
![山东省青岛市崂山区第二中学2023届数学高一上期末考试模拟试题含解析_第3页](http://file4.renrendoc.com/view/157934f0c5d94f36f33171f70ceb1f3a/157934f0c5d94f36f33171f70ceb1f3a3.gif)
![山东省青岛市崂山区第二中学2023届数学高一上期末考试模拟试题含解析_第4页](http://file4.renrendoc.com/view/157934f0c5d94f36f33171f70ceb1f3a/157934f0c5d94f36f33171f70ceb1f3a4.gif)
![山东省青岛市崂山区第二中学2023届数学高一上期末考试模拟试题含解析_第5页](http://file4.renrendoc.com/view/157934f0c5d94f36f33171f70ceb1f3a/157934f0c5d94f36f33171f70ceb1f3a5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.如图,在正方体中,分别为的中点,则异面直线与所成的角等于A. B.C. D.2.如图,网格纸的各小格都是正方形(边长为1),粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体的表面积为()A. B.C. D.3.若,则等于A. B.C. D.4.直线与直线平行,则的值为()A. B.2C. D.05.已知向量,且,则的值为()A.1 B.2C. D.36.要得到函数的图象,只需将函数的图象()A.向左平移 B.向右平移C.向右平移 D.向左平移7.已知是第二象限角,且,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.若函数的定义域为,满足:①在内是单调函数;②存在区间,使在上的值域为,则称函数为“上的优越函数”.如果函数是“上的优越函数”,则实数的取值范围是()A.B.C.D.9.函数的图象如图所示,则在区间上的零点之和为()A. B.C. D.10.已知函数的值域为R,则a的取值范围是()A. B.C. D.11.函数的定义域为D,若满足;(1)在D内是单调函数;(2)存在,使得在上的值域也是,则称为闭函数;若是闭函数,则实数的取值范围是()A. B.C. D.12.将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向右平移个单位,得到的图象对应的解析式是A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数f(x)=(a>0,a≠1)是偶函数,则a=_________,则f(x)的最大值为________.14.若角的终边经过点,则___________15.若关于的不等式对任意的恒成立,则实数的取值范围为____________16.设函数,若其定义域内不存在实数,使得,则的取值范围是______三、解答题(本大题共6小题,共70分)17.已知函数是偶函数.(1)求k的值;(2)设,若函数与的图象有且只有一个公共点,求实数a的取值范围.18.设函数(1)求的最小正周期;(2)若函数的图象向右平移个单位后得到函数的图象,求函数在上的最值19.设函数.(1)当时,求函数的零点;(2)当时,判断的奇偶性并给予证明;(3)当时,恒成立,求m的最大值.20.已知集合,集合.(1)当时,求;(2)若,求实数的取值范围.21.已知集合A={x|x2-px+q=0},B={x|x2-x-6=0}(Ⅰ)若A∪B={-2,1,3},A∩B={3},用列举法表示集合A;(Ⅱ)若∅AB,且p+q>0,求p,q的值22.已知θ是第二象限角,,求:(1);(2)
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】取的中点,则由三角形的中位线的性质可得平行且等于的一半,故或其补角即为异面直线与所成的角.设正方体的棱长为1,则,,故为等边三角形,故∠EGH=60°考点:空间几何体中异面直线所成角.【思路点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角,是解题的关键,体现了等价转化的数学思想.取的中点,由三角形的中位线的性质可得或其补角即为异面直线与所成的角.判断为等边三角形,从而求得异面直线与所成的角的大小2、B【解析】根据三视图的法则:长对正,高平齐,宽相等;可得几何体如右图所示,这是一个三棱柱.表面积为:故答案为B.3、B【解析】,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系第II卷(非选择题4、B【解析】根据两直线平行的条件列式可得结果.【详解】当时,直线与直线垂直,不合题意;当时,因直线与直线平行,所以,解得.故选:B【点睛】易错点点睛:容易忽视纵截距不等这个条件导致错误.5、A【解析】由,转化为,结合数量积的坐标运算得出,然后将所求代数式化为,并在分子分母上同时除以,利用弦化切的思想求解【详解】由题意可得,即∴,故选A【点睛】本题考查垂直向量的坐标表示以及同角三角函数的基本关系,考查弦化切思想的应用,一般而言,弦化切思想应用于以下两方面:(1)弦的分式齐次式:当分式是关于角弦的次分式齐次式,分子分母同时除以,可以将分式由弦化为切;(2)弦的二次整式或二倍角的一次整式:先化为角的二次整式,然后除以化为弦的二次分式齐次式,并在分子分母中同时除以可以实现弦化切6、B【解析】根据左右平移的平移特征(左加右减)即可得解.【详解】解:要得到函数的图象,只需将函数的图象向右平移个单位即可.故选:B.7、B【解析】根据所在象限可判断出,,从而可得答案.【详解】为第二象限角,,,则点位于第二象限.故选:B.8、D【解析】由于是“上的优越函数”且函数在上单调递减,由题意得,,问题转化为与在时有2个不同的交点,结合二次函数的性质可求【详解】解:因为是“上的优越函数”且函数在上单调递减,若存在区间,使在上的值域为,由题意得,,所以,,即与在时有2个不同的交点,根据二次函数单调性质可知,即故选:D9、D【解析】先求出周期,确定,再由点确定,得函数解析式,然后可求出上的所有零点【详解】由题意,∴,又且,∴,∴由得,,,在内有:,它们的和为故选:D10、D【解析】首先求出时函数的值域,设时,的值域为,依题意可得,即可得到不等式组,解得即可;【详解】解:由题意可得当时,所以的值域为,设时,的值域为,则由的值域为R可得,∴,解得,即故选:D11、C【解析】先判定函数的单调性,然后根据条件建立方程组,转化为使方程有两个相异的非负实根,最后建立关于的不等式,解之即可.【详解】因为函数是单调递增函数,所以即有两个相异非负实根,所以有两个相异非负实根,令,所以有两个相异非负实根,令则,解得.故选.【点睛】本题考查了函数与方程,二次方程实根的分布,转化法,属于中档题.12、D【解析】横坐标伸长倍,则变为;根据左右平移的原则可得解析式.【详解】横坐标伸长倍得:向右平移个单位得:本题正确选项:【点睛】本题考查三角函数图象平移变换和伸缩变换,关键是能够明确伸缩变换和平移变换都是针对于的变化.二、填空题(本大题共4小题,共20分)13、①.②.【解析】根据偶函数f(-x)=f(x)即可求a值;分离常数,根据单调性即可求最大值,或利用基本不等式求最值.【详解】是偶函数,,则,则,即,则,则,则,当且仅当,即,则时取等号,即的最大值为,故答案为:,14、【解析】根据定义求得,再由诱导公式可求解.【详解】角的终边经过点,则,所以.故答案为:.15、【解析】根据题意显然可知,整理不等式得:,令,求出在的范围即可求出答案.【详解】由题意知:,即对任意的恒成立,当,得:,即对任意的恒成立,即对任意的恒成立,令,在上单减,所以,所以.故答案为:16、【解析】按的取值范围分类讨论.【详解】当时,定义域,,满足要求;当时,定义域,取,,时,,不满足要求;当时,定义域,,,满足要求;当时,定义域,取,,时,,不满足要求;综上:故答案为:【点睛】关键点睛:由参数变化引起的分类讨论,可根据题设按参数在不同区间,对应函数的变化,找到参数的取值范围.三、解答题(本大题共6小题,共70分)17、(1);(2).【解析】(1)根据偶函数得到,化简得到,解得答案.(2)化简得方程,设得到有且仅有一个正根,考虑和两种情况,计算得到答案.【详解】(1)由函数是偶函数可知:,∴,,即对一切恒成立,∴.(2)函数与的图象有且只有一个公共点,即方程有且只有一个实根.化简得:方程有且只有一个实根.令,则方程有且只有一个正根,当时,,不合题意;当且,解得或.若,,不合题意;若,满足;当且时,即或且,故;综上,实数a的取值范围是.【点睛】本题考查了根据函数的奇偶性求参数,函数公共交点问题,意在考查学生的计算能力和综合应用能力,换元是解题关键.18、(1);(2)最大值为,最小值为.【解析】(1)利用辅助角公式化简f(x)解析式即可根据正弦型函数的周期求解;(2)求出g(x)解析式,根据正弦型函数的性质可求其在上的最值.【小问1详解】,故函数的最小正周期;【小问2详解】,,∴,故,19、(1)﹣3和1(2)奇函数,证明见解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定义判断;(3)将时,恒成立,转化为,在上恒成立求解.【小问1详解】解:当时,由,解得或,∴函数的零点为﹣3和1;【小问2详解】由(1)知,则,由,解得,故的定义域关于原点对称,又,,∴,∴是上的奇函数.【小问3详解】∵,且当时,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上单调递增∴,∴,故m的最大值为3.20、(1);(2).【解析】(1)先分别求出,然后根据集合的并集的概念求解出的结果;(2)根据得到,由此列出不等式组求解出的取值范围.【详解】(1)当时,,∴;(2)∵,∴,则有:,解之得:.∴实数的取值范围是【点睛】本题考查集合的并集运算以及根据集合的包含关系求解参数范围,难度一般.根据集合间的包含关系求解参数范围时,要注意分析集合为空集的可能.21、(Ⅰ){3,1}(Ⅱ)p=6,q=9【解析】(Ⅰ)可求出B={-2,3},根据A∪B={-2,1,3},A∩B={3},即可求出集合A;(Ⅱ)根据条件∅AB即可得出A={-2},或{3},再根据p+q>0即可求出p,q的值【详解】(Ⅰ)B={-2,3};∵A∪B={-2,1,3},A∩B={3};∴A={3,1};(Ⅱ)∵∅AB;∴A={-2},或A={3};①若A={-2},则;∴p+q=0,不满
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60670-1:2024 RLV EN Boxes and enclosures for electrical accessories for household and similar fixed electrical installations - Part 1: General requirements
- 2025年度电商渠道拓展与营销合作合同范本
- 2025年度个人住房按揭贷款合同范本-@-1
- 2025年度肉羊屠宰加工企业战略合作框架合同4篇
- 班级历史文化月活动计划
- 2025年理发、美容服务合作协议书
- 以消费者为中心的品牌策略计划
- 幼儿园园所文化建设的教研活动计划
- 推动护理专科发展与提升的策略计划
- 教学目标达成情况分析计划
- 高中化学教材(人教版)课本实验(回归课本)
- 安徽省芜湖市2023-2024学年高二上学期期末考试 数学 含解析
- 项目工程质量管理体系
- 2020光伏组件用接线盒 安全要求和试验IEC62790
- 兽药GSP质量管理制度汇编
- USB-3.1-TYPE-C-培训资料公开课获奖课件
- 《机械制图(多学时)》中职全套教学课件
- 儿科体格检查课件
- 2024-2025学年小学信息技术(信息科技)第二册电子工业版(2022)教学设计合集
- 北京能源集团有限责任公司招聘笔试题库2024
- 消防改造期间消防应急预案
评论
0/150
提交评论