版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数,则()A.2 B.5C.7 D.92.已知全集U={0,1,2}且={2},则集合A的真子集共有A.3个 B.4个C.5个 D.6个3.设函数,若关于方程有个不同实根,则实数的取值范围为()A. B.C. D.4.下列直线中,倾斜角为45°的是()A. B.C. D.5.若函数且在上既是奇函数又是增函数,则的图象是A. B.C. D.6.已知幂函数的图象过(4,2)点,则A. B.C. D.7.如图,在等腰梯形中,,分别是底边的中点,把四边形沿直线折起使得平面平面.若动点平面,设与平面所成的角分别为(均不为0).若,则动点的轨迹围成的图形的面积为A. B.C. D.8.已如集合,,,则()A. B.C. D.9.已知定义域为的奇函数满足,若方程有唯一的实数解,则()A.2 B.4C.8 D.1610.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知一元二次不等式对一切实数x都成立,则k的取值范围是___________.12.向量在边长为1的正方形网格中的位置如图所示,则__________13.边长为2的菱形中,,将沿折起,使得平面平面,则二面角的余弦值为__________14.已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),则BC边上的中线AD所在的直线方程为_____15.若在内有两个不同的实数值满足等式,则实数k的取值范围是_______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.—条光线从点发出,经轴反射后,经过点,求入射光线和反射光线所在的直线方程.17.如图,在直三棱柱ABC-A1B1C1中,D、E分别为AB、BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线A1C1∥平面B1DE;(2)平面A1B1BA⊥平面A1C1F.18.已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.19.如图,在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边与单位圆交于点,(1)求的值;(2)将射线绕坐标原点按逆时针方向旋转后与单位圆交于点,求的值;(3)若点与关于轴对称,求的值.20.如图所示,在多面体中,四边形是正方形,,为的中点.(1)求证:平面;(2)求证:平面平面.21.设函数是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若,且在上的最小值为2,求实数k的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】先求出,再求即可,【详解】由题意得,所以,故选:D2、A【解析】,所以集合A的真子集的个数为个,故选A.考点:子集3、B【解析】等价于,即或,转化为与和图象交点的个数为个,作出函数的图象,数形结合即可求解【详解】作出函数的图象如下图所示变形得,由此得或,方程只有两根所以方程有三个不同实根,则,故选:B【点睛】易错点点睛:本题的易错点为函数的图像无限接近直线,即方程只有两根,另外难点在于方程的变形,即因式分解4、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线的倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C5、D【解析】根据题意先得到,,判断其单调性,进而可求出结果.【详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【点睛】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.6、D【解析】设函数式为,代入点(4,2)得考点:幂函数7、D【解析】由题意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF,θ1=θ2,∴PE=PF以EF所在直线为x轴,EF的垂直平分线为y轴建立坐标系,设E(﹣,0),F(,0),P(x,y),则(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,轨迹为圆,面积为故答案选:D点睛:这个题考查的是立体几何中点的轨迹问题,在求动点轨迹问题中常用的方法有:建立坐标系,将立体问题平面化,用方程的形式体现轨迹;或者根据几何意义得到轨迹,但是注意得到轨迹后,一些特殊点是否需要去掉8、C【解析】根据交集和补集的定义可求.【详解】,故,故选:C.9、B【解析】由条件可得,为周期函数,且一个周期为6,设,则得到偶函数,由有唯一的实数解,得有唯一的零点,则,从而得到答案.【详解】由得,即,从而,所以为周期函数,且一个周期为6,所以.设,将的图象向右平移1个单位长度,可得到函数的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,即,即,解得,所以故选:.【点睛】关键点睛:本题考查函数的奇偶性和周期性的应用,解答本题的关键是由条件得到,得到为周期函数,设的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,属于中档题.10、C【解析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由题意,函数的图象在x轴上方,故,解不等式组即可得k的取值范围【详解】解:因为不等式为一元二次不等式,所以,又一元二次不等式对一切实数x都成立,所以有,解得,即,所以实数k的取值范围是,故答案为:.12、3【解析】由题意可知故答案为313、【解析】作,则为中点由题意得面作,连则为二面角的平面角故,,点睛:本题考查了由平面图形经过折叠得到立体图形,并计算二面角的余弦值,本题关键在于先找出二面角的平面角,依据定义先找出平面角,然后根据各长度,计算得结果14、【解析】求出的坐标后可得的直线方程.【详解】的坐标为,故的斜率为,故直线的方程为即,故答案为:15、【解析】讨论函数在的单调性即可得解.【详解】函数,时,单调递增,时,单调递减,,,,所以在内有两个不同的实数值满足等式,则,所以.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0【解析】如图所示,作A点关于x轴的对称点A′,显然,A′坐标为(3,-2),连接A′B,则A′B所在直线即为反射光线由两点式可得直线A′B的方程为,即2x+y-4=0.同理,点B关于x轴的对称点为B′(-1,-6),由两点式可得直线AB′的方程为,即2x-y-4=0,∴入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0.考点:两点式直线方程,对称问题.17、证明过程详见解析【解析】(1)先证明DE∥A1C1,即证直线A1C1∥平面B1DE.(2)先证明DE⊥平面AA1B1B,再证明A1F⊥平面B1DE,即证平面AA1B1B⊥平面A1C1F.【详解】证明:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC-A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵DE⊂平面B1DE,且A1C1⊄平面B1DE,∴A1C1∥平面B1DE;(2)在ABC-A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面AA1B1B⊥平面A1C1F【点睛】本题主要考查空间直线平面位置关系的证明,意在考查学生对这些知识的掌握水平和空间想象转化能力.18、(1).(2).【解析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.19、(1)(2)(3)【解析】(1)由三角函数的定义得到,再根据且点在第一象限,即可求出;(2)依题意可得,再由(1),即可得解;(3)首先求出的坐标,连接交轴于点,即可得到,再利用二倍角公式计算可得;【小问1详解】解:因为角终边与单位圆交于点,且,由三角函数定义,得.因为,所以.因为点在第一象限,所以.【小问2详解】解:因为射线绕坐标原点按逆时针方向旋转后与单位圆交于点,所以.因为,所以.【小问3详解】解:因为点与关于轴对称,所以点的坐标是.连接交轴于点,所以.所以.所以的值是.20、(1)见解析;(2)见解析.【解析】(1)设与交于点,连接易证得四边形为平行四边形,所以,进而得证;(2)先证得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 22142-2024饲料添加剂有机酸通用要求
- 2024年度生态环境保护责任担保合同
- 安全用电施工协议书模板6
- 2024年度船舶租赁合同:航务管理与运营
- 2024年度企业信息系统集成服务合同
- 2024年度社交电商平台商家入驻合同:平台与商家之间的经营规范和费用结算3篇
- 2024年度电影项目评估与审计合同
- 《对数函数课时》课件
- 2024年度体育用品销售区域运营合同
- 2024年度国际汽车销售与维修服务合同2篇
- 怀感恩与爱同行 主题班会课件
- 北京能源集团有限责任公司招聘笔试题库2024
- 牛津译林版英语2024七年级上册全册单元知识清单(默写版)
- 2024年广东省高中学业水平合格考语文试卷真题(含答案详解)
- S7-1500 PLC应用技术 习题及答案
- 危险化学品装卸作业安全技术操作规程
- 生物体的结构层次大单元教学设计人教版生物七年级上册
- 浅谈智能化工程总包管理及智能化工程深化设计
- 河南省科技成果鉴定、奖励申报技术资料编写的要求与技巧
- 防火门安装施工方案
- 糖尿病中医防治指南(修订版)及其临床应用
评论
0/150
提交评论