版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.若直线与直线垂直,则()A.1 B.2C. D.2.已知集合,,则集合()A. B.C. D.3.A B.C.1 D.4.若:,则成立的一个充分不必要条件是()A. B.C. D.5.若函数且,则该函数过的定点为()A. B.C. D.6.若偶函数在区间上是减函数,是锐角三角形的两个内角,且,则下列不等式中正确的是()A. B.C. D.7.已知函数若曲线与直线的交点中,相邻交点的距离的最小值为,则的最小正周期为A. B.C. D.8.在中,,BC边上的高等于,则()A. B.C. D.9.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是A. B.C. D.10.已知函数的单调区间是,那么函数在区间上()A.当时,有最小值无最大值 B.当时,无最小值有最大值C.当时,有最小值无最大值 D.当时,无最小值也无最大值11.直线的倾斜角A. B.C. D.12.设入射光线沿直线y=2x+1射向直线,则被反射后,反射光线所在的直线方程是A. B.C. D.二、填空题(本大题共4小题,共20分)13.设,若存在使得关于x的方程恰有六个解,则b的取值范围是______14.已知是定义在R上的周期为2的奇函数,当时,,则___________.15.已知函数,,若不等式恰有两个整数解,则实数的取值范围是________16.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________三、解答题(本大题共6小题,共70分)17.已知圆的方程为,是坐标原点.直线与圆交于两点(1)求的取值范围;(2)过点作圆的切线,求切线所在直线的方程.18.已知函数.(1)求的最小正周期;(2)若,求的值域.19.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.20.已知函数图象上的一个最高点的坐标为,此点到相邻最低点间的曲线与轴交于点(1)求函数的解析式;(2)用“五点法”画出(1)中函数在上的图象.21.已知函数.(1)求函数的定义域;(2)设,若函数在上有且仅有一个零点,求实数的取值范围;(3)设,是否存在正实数,使得函数在内的最大值为4?若存在,求出的值;若不存在,请说明理由.22.已知实数是定义在上的奇函数.(1)求的值;(2)求函数的值域;(3)当时,恒成立,求实数的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】分析直线方程可知,这两条直线垂直,斜率之积为-1.【详解】由题意可知,即故选:B.2、B【解析】解不等式求得集合、,由此求得.【详解】,,所以.故选:B3、A【解析】由题意可得:本题选择A选项.4、C【解析】根据不等式的解法求得不等式的解集,结合充分条件、必要条件的判定方法,即可求解.【详解】由题意,不等式,可得,解得,结合选项,不等式的一个充分不必要条件是.故选:C.5、D【解析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【点睛】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.6、C【解析】根据,可得,根据的单调性,即可求得结果.【详解】因为是锐角三角形的两个内角,故可得,即,又因为,故可得;是偶函数,且在单调递减,故可得在单调递增,故.故选:C.【点睛】本题考查由函数奇偶性判断函数的单调性,涉及余弦函数的单调性,属综合中档题.7、D【解析】将函数化简,根据曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,即ωx2kπ或ωx2kπ,k∈Z,建立关系,可得ω的值,即得f(x)的最小正周期【详解】解:函数f(x)=cosωx+sinωx,ω>0,x∈R化简可得:f(x)sin(ωx)∵曲线y=f(x)与直线y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故选D【点睛】本题考查了和差公式、三角函数的图象与性质、三角函数的方程的解法,考查了推理能力与计算能力,属于中档题8、C【解析】设,故选C.考点:解三角形.9、C【解析】先由三角函数的最值得或,再由得,进而可得单调增区间.【详解】因为对任意恒成立,所以,则或,当时,,则(舍去),当时,,则,符合题意,即,令,解得,即的单调递增区间是;故选C.【点睛】本题主要考查了三角函数的图像和性质,利用三角函数的性质确定解析式,属于中档题.10、D【解析】依题意不等式的解集为(1,+∞),即可得到且,即,再根据二次函数的性质计算在区间(-1,2)上的单调性及取值范围,即可得到函数的最值情况【详解】因为函数的单调区间是,即不等式的解集为(1,+∞),所以且,即,所以,当时,在上满足,故此时为增函数,既无最大值也无最小值,由此A,B错误;当时,在上满足,此时为减函数,既无最大值也无最小值,故C错误,D正确,故选:D.11、A【解析】先求得直线的斜率,然后根据斜率和倾斜角的关系,求得.【详解】可得直线的斜率为,由斜率和倾斜角的关系可得,又∵∴故选:A.【点睛】本小题主要考查直线倾斜角与斜率,属于基础题.12、D【解析】由可得反射点A(−1,−1),在入射光线y=2x+1上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上根据点A(−1,−1)和点C(1,0)坐标,利用两点式求得反射光线所在的直线方程是,化简可得x−2y−1=0.故选D.二、填空题(本大题共4小题,共20分)13、【解析】作出f(x)的图像,当时,,当时,.令,则,则该关于t的方程有两个解、,设<,则,.令,则,据此求出a的范围,从而求出b的范围【详解】当时,,当时,,当时,,则f(x)图像如图所示:当时,,当时,令,则,∵关于x的方程恰有六个解,∴关于t的方程有两个解、,设<,则,,令,则,∴且,要存a满足条件,则,解得故答案为:14、##【解析】根据函数的周期和奇偶性即可求得答案.【详解】因为函数的周期为2的奇函数,所以.故答案为:.15、.【解析】因为,所以即的取值范围是.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等16、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.三、解答题(本大题共6小题,共70分)17、(1);(2)或【解析】(1)直线与圆交于两点,即直线与圆相交,转化成圆心到直线距离小于半径,利用公式解不等式;(2)过某点求圆的切线,分斜率存在和斜率不存在两种情况数形结合分别讨论.【详解】(1)圆心到直线的距离,解得或即k的取值范围为.(2)当过点P的直线斜率不存在时,即x=2与圆相切,符合题意.当过点P的直线斜率存在时,设其方程为即,由圆心(0,4)到直线的距离等于2,可得解得,故直线方程为综上所述,圆的切线方程为或【点睛】此题考查直线和圆的位置关系,结合圆的几何性质处理相交相切,过某点的直线在设其方程的时候一定注意讨论斜率是否存在,这是一个易错点,对逻辑思维能力要求较高,当然也可以考虑直线与二次曲线的常规解法.18、(1)最小正周期;(2).【解析】(1)先利用余弦的二倍角公式和两角差的正弦化简后,再由辅助角公式化简,利用周期公式求周期;(2)由x的范围求出的范围,再由正弦函数的有界性求f(x)的值域.【详解】由已知(1)函数的最小正周期;(2)因为,所以所以,所以.【点睛】本题考查三角函数的周期性、值域及两角和与差的正弦、二倍角公式,关键点是对的解析式利用公式进行化简,考查学生的基础知识、计算能力,难度不大,综合性较强,属于简单题.19、(1)(2)【解析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【点睛】本题考查待定系数法求函数解析式,以及由指数函数的单调性解不等式,属于基础题.20、(1);(2)图见解析【解析】(1)根据条件中所给函数的最高点的坐标,写出振幅,根据两个相邻点的坐标写出周期,把一个点的坐标代入求出初相,写出解析式;(2)利用五点法即可得到结论【详解】(1),,又,(2)00020-20本题主要考查三角函数的图象和性质,根据条件确定A,ω,φ的取值是解决本题的关键21、(1);(2);(3)存在,.【解析】(1)根据对数函数的定义域列不等式求解即可.(2)由函数的单调性和零点存在定理,列不等式求解即可.(3)由对勾函数的性质可得函数的单调区间,利用分类讨论的思想讨论定义域与单调区间的关系,再利用函数的最值存在性问题求出实数的值.【详解】(1)由题意,函数有意义,则满足,解得,即函数的定义域为.(2)由,且,可得,且为单调递增连续函数,又函数在上有且仅有一个零点,所以,即,解得,所以实数的取值范围是.(3)由,设,则,易证在为单调减函数,在为单调增函数,当时,函数在上为增函数,所以最大值为,解得,不符合题意,舍去;当时,函数在上为减函数,所以最大值为,解得,不符合题意,舍去;当时,函数在上减函数,在上为增函数,所以最大值为或,解得,符合题意,综上可得,存在使得函数的最大值为4.【点睛】本题考查了对数函数的定义域问题、零点存在定理、对勾函数的应用,考查了理解辨析的能力、数学运算能力、分类讨论思想和转化的数学思想,属于一般题目.22、(1);(2);(3).【解析】(1)由是定义在上的奇函数,利用可得的值;(2)化简利用指数函数的值域以及不等式的性质可得函数的值域;(3)应用参数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 受限玻尔兹曼机RBM学习笔记
- 荷叶圆圆说课稿15篇
- 快递作业实务教学案
- 2024年互联网行业趋势预测:5G时代的变革与机遇
- 2024年食品干燥剂市场前景分析:食品干燥剂未来几年将年均11%的增速
- 2024年度餐饮业务合作承包协议
- 农业观光生态旅游项目可行性研究报告
- 丰县农村房屋出租合同范本
- 人间小满读书笔记
- 跨国公司学习通超星期末考试答案章节答案2024年
- 2022年海淀初中入学白皮书
- 外研社新标准小学英语(一起点)单词表(带音标)(全)
- 2023年中国铁路上海局招考聘用本科及以上学历毕业生(62人)笔试题库含答案解析
- 部编版语文六年级下册总复习病句选择题精选精练(有答案)
- 气排球记录方法五人制2017年5月9日
- 信用管理师(三级)理论考试题库(300题)
- 医学创新与科学研究知到章节答案智慧树2023年岳阳职业技术学院
- 社会体育导论教学教案
- 厂房物业管理服务合同
- 新生适应性成长小组计划书
- 08SS523建筑小区塑料排水检查井
评论
0/150
提交评论