版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,那么()A. B.C. D.2.已知角是的内角,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件3.已知圆(,为常数)与.若圆心与圆心关于直线对称,则圆与的位置关系是()A.内含 B.相交C.内切 D.相离4.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)等于()A.﹣x+1 B.﹣x﹣1C.x+1 D.x﹣15.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)的表达式是A. B.C. D.6.下列函数中,既是偶函数,又在区间上单调递减的是()A. B.C. D.7.命题p:∀x∈N,x3>x2的否定形式¬p为()A.∀x∈N,x3≤x2 B.∃x∈N,x3>x2C.∃x∈N,x3<x2 D.∃x∈N,x3≤x28.一个孩子的身高与年龄(周岁)具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是()A.回归直线一定经过样本点中心B.斜率的估计值等于6.217,说明年龄每增加一个单位,身高就约增加6.217个单位C.年龄为10时,求得身高是,所以这名孩子的身高一定是D.身高与年龄成正相关关系9.下列各角中,与终边相同的角为()A. B.160°C. D.360°10.函数的单调递减区间为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.求值:__________12.已知,,则的值为__________13.为了解某校高三学生身体状况,用分层抽样的方法抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,若全校男、女生比例为3:2,则全校抽取学生数为________14.已知集合,,则_________.15.函数的单调递增区间为__________16.命题“,使关于的方程有实数解”的否定是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(,),若函数在区间上的最大值为3,最小值为2.(1)求函数的解析式;(2)求在上的单调递增区间;(3)是否存在正整数,满足不等式,若存在,找出所有这样的,的值,若不存在,说明理由.18.指数函数(且)和对数函数(且)互为反函数,已知函数,其反函数为(1)若函数在区间上单调递减,求实数的取值范围;(2)是否存在实数使得对任意,关于的方程在区间上总有三个不等根,,?若存在,求出实数及的取值范围;若不存在,请说明理由19.已知全集,,.(1)求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.20.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求值21.已知等差数列满足,前项和.(1)求的通项公式(2)设等比数列满足,,求的通项公式及的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先利用指数函数单调性判断b,c和1大小关系,再判断a与1的关系,即得结果.【详解】因为在单调递增,,故,即,而,故.故选:B.2、C【解析】在中,由求出角A,再利用充分条件、必要条件的定义直接判断作答.【详解】因角是的内角,则,当时,或,即不一定能推出,若,则,所以“”是“”的必要不充分条件.故选:C3、B【解析】由对称求出,再由圆心距与半径关系得圆与圆的位置关系【详解】,,半径为,关于直线的对称点为,即,所以,圆半径为,,又,所以两圆相交故选:B4、B【解析】当x<0时,,选B.点睛:已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.5、A【解析】由题意得,当时,则,当时,,所以,又因为函数是定义在上的奇函数,所以,故选A考点:函数的奇偶性的应用;函数的表达式6、D【解析】依次判断4个选项的单调性及奇偶性即可.【详解】对于A,在区间上单调递增,错误;对于B,,由得,单调递增,错误;对于C,当时,没有意义,错误;对于D,为偶函数,且在时,单调递减,正确.故选:D.7、D【解析】根据含有一个量词命题的否定的定义求解.【详解】因为命题p:∀x∈N,x3>x2的是全称量词命题,其否定是存在量词命题,所以¬p:∃x∈N,x3≤x2故选:D【点睛】本题主要考查含有一个量词命题的否定,还考查了理解辨析的能力,属于基础题.8、C【解析】利用线性回归方程过样本中心点可判断A;由回归方程求出的数值是估计值可判断B、C;根据回归方程的一次项系数可判断D;【详解】对于A,线性回归方程一定过样本中心点,故A正确;对于B,由于斜率是估计值,可知B正确;对于C,当时,求得身高是是估计值,故C错误;对于D,线性回归方程的一次项系数大于零,故身高与年龄成正相关关系,故D正确;故选:C【点睛】本题考查了线性回归方程的特征,需掌握这些特征,属于基础题.9、C【解析】由终边相同角的定义判断【详解】与终边相同角为,而时,,其它选项都不存在整数,使之成立故选:C10、C【解析】由幂函数的性质知,函数的图像以原点为对称中心,在均是减函数故答案为C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接利用两角和的正切公式计算可得;【详解】解:故答案为:12、【解析】根据两角和的正弦公式即可求解.【详解】由题意可知,因为,所以,所以,则故答案为:.13、80【解析】频率分布直方图中,先根据小矩形的面积等于这一组的频率求出四与第五组的频率和,再根据条件求出前三组的频数,再依据频率的和等于1,求出前三组的频率,从而求出抽取的男生数,最后按比例求出全校抽取学生数即可【详解】根据图可知第四与第五组的频率和为(0.0125+0.0375)×5=0.25∵从左到右前三个小组频率之比1:2:3,第二小组频数为12∴前三个小组的频数为36,从而男生有人∵全校男、女生比例为3:2,∴全校抽取学生数为48×=80故答案为80【点睛】本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识14、【解析】由对数函数单调性,求出集合A,再根据交集的定义即可求解.【详解】解:,,,故答案为:.15、【解析】由可得,或,令,因为在上递减,函数在定义域内递减,根据复合函数的单调性可得函数的单调递增区间为,故答案为.16、,关于的方程无实数解【解析】直接利用特称命题的否定为全称命题求解即可.【详解】因为特称命题的否定为全称命题,否定特称命题是,既要否定结论,又要改变量词,所以命题“,使关于的方程有实数解”的否定为:“,关于的方程无实数解”.故答案为:,关于的方程无实数解三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)存在,,或,或,【解析】(1)根据函数在区间上的最大值为3,最小值为2,利用正弦函数的最值求解;(2)利用正弦函数的单调性求解;(3)先化简不等式,再根据,为正整数求解.【小问1详解】解:∵,∴,∴,又∵m>0,最大值为3,最小值为2,∴,解得m=2,n=1.∴.【小问2详解】令,k∈Z,得到,k∈Z,当k=0时,,∴在[0,2]上的单调递增区间是.【小问3详解】由,得,∵a∈N*,b∈N*,∴a=1时,b=1或2;a=2时,b=1;a>2时,b不存在,∴所有满足题意a,b的值为:a=1,b=1或a=1,b=2或a=2,b=1.18、(1);(2)存在,,.【解析】(1)利用复合函数的单调性及函数的定义域可得,即得;(2)由题可得,令,则可得时,方程有两个不等的实数根,当时方程有且仅有一个根在区间内或1,进而可得对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,再利用二次函数的性质可得,即得.【小问1详解】∵函数,其反函数为,∴,∴,又函数在区间上单调递减,又∵在定义域上单调递增,∴函数在区间上单调递减,∴,解得;【小问2详解】∵,∴,∵,,令,则时,方程有两个不等的实数根,不妨设为,则,即,∴,即方程有两个不等的实数根,且两根积为1,当时方程有且仅有一个根在区间内或1,由,可得,令,则原题目等价于对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,则必有,∴,解得,此时,则其根在区间内,所以,综上,存在,使得对任意,关于的方程在区间上总有三个不等根,,,的取值范围为.【点睛】关键点点睛:本题第二问关键是把问题转化为对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,进而利用二次函数性质可求.19、(1);(2);(3).【解析】(1)因为全集,,所以(2)因为,且.所以实数的取值范围是(3)因为,且,所以,所以可得20、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 齐齐哈尔大学《嵌入式系统原理及应用》2022-2023学年期末试卷
- 系统测试合同范本
- 材料订货合同范本
- 2012购房合同范本
- 木材经营合同范本
- 受限玻尔兹曼机RBM学习笔记
- 荷叶圆圆说课稿15篇
- 快递作业实务教学案
- 2024年互联网行业趋势预测:5G时代的变革与机遇
- 2024年食品干燥剂市场前景分析:食品干燥剂未来几年将年均11%的增速
- 外研社新标准小学英语(一起点)单词表(带音标)(全)
- 2023年中国铁路上海局招考聘用本科及以上学历毕业生(62人)笔试题库含答案解析
- 部编版语文六年级下册总复习病句选择题精选精练(有答案)
- 气排球记录方法五人制2017年5月9日
- 信用管理师(三级)理论考试题库(300题)
- 医学创新与科学研究知到章节答案智慧树2023年岳阳职业技术学院
- 社会体育导论教学教案
- 厂房物业管理服务合同
- 新生适应性成长小组计划书
- 08SS523建筑小区塑料排水检查井
- 教学评一体化的教学案例 课件
评论
0/150
提交评论