2023届河北省衡水市武邑中学数学高一上期末经典模拟试题含解析_第1页
2023届河北省衡水市武邑中学数学高一上期末经典模拟试题含解析_第2页
2023届河北省衡水市武邑中学数学高一上期末经典模拟试题含解析_第3页
2023届河北省衡水市武邑中学数学高一上期末经典模拟试题含解析_第4页
2023届河北省衡水市武邑中学数学高一上期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,且满足,则的最小值为()A.2 B.3C. D.2.下列函数中,最小正周期为的奇函数是()A. B.C. D.3.计算2sin2105°-1的结果等于()A. B.C. D.4.已知四面体ABCD中,E,F分别是AC,BD的中点,若AB=6,CD=8,EF=5,则AB与CD所成角的度数为A.30° B.45°C.60° D.90°5.过点(5,2),且在y轴上的截距是在x轴上的截距的2倍的直线方程是()A.2x+y-12=0 B.x-2y-1=0或2x-5y=0C.x-2y-1=0 D.2x+y-12=0或2x-5y=06.已知直线的方程为,则该直线的倾斜角为A. B.C. D.7.已知,,则下列说法正确的是()A. B.C. D.8.已知某几何体的三视图如图所示,则该几何体的体积为A. B.C. D.9.设,满足约束条件,且目标函数仅在点处取得最大值,则原点到直线的距离的取值范围是()A. B.C. D.10.如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,其中恒成立的为()A.①③ B.③④C.①④ D.②③二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若互不相等的实数、、满足,则的取值范围是_________12.已知函数在区间,上恒有则实数的取值范围是_____.13.已知函数是定义在上的奇函数,则___________.14.已知直线,直线若,则______________15.已知,,则的值为16.求值:__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求函数的最小正周期及单调递减区间;(2)求函数在区间上的最大值和最小值.18.近年来,国家大力推动职业教育发展,职业教育体系不断完善,人才培养专业结构更加符合市场需求.一批职业培训学校以市场为主导,积极参与职业教育的改革和创新.某职业培训学校共开设了六个专业,根据前若干年的统计数据,学校统计了各专业每年的就业率(直接就业的学生人数与招生人数的比值)和每年各专业的招生人数,具体统计数据如下表:专业机电维修车内美容衣物翻新美容美发泛艺术类电脑技术招生人数就业率(1)从该校已毕业的学生中随机抽取人,求该生是“衣物翻新”专业且直接就业的概率;(2)为适应市场对人才需求的变化,该校决定从明年起,将“电脑技术”专业的招生人数减少人,将“机电维修”专业的招生人数增加人,假设“电脑技术”专业的直接就业人数不变,“机电维修”专业的就业率不变,其他专业的招生人数和就业率都不变,要使招生人数调整后全校整体的就业率比往年提高个百分点,求的值19.已知函数的最小正周期为,再从下列两个条件中选择一个作为已知条件:条件①:的图象关于点对称;条件②:的图象关于直线对称(1)请写出你选择的条件,并求的解析式;(2)在(1)的条件下,当时,求的最大值和最小值,并指出相应的取值注;如果选择条件①和条件②分别解答,按第一个解答计分20.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:0050(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;(Ⅱ)将图象上所有点向左平行移动个单位长度,得到的图象.若图象的一个对称中心为,求的最小值21.若函数是奇函数(),且,.(1)求实数,,的值;(2)判断函数在上的单调性,并利用函数单调性的定义证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意得,根据基本不等式“1”的代换,计算即可得答案.【详解】因为,所以,所以,当且仅当时,即,时取等号所以的最小值为.故选:C2、C【解析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简.【详解】A选项:,其定义域为,,为偶函数,其最小正周期为,故A错误.B选项:,其最小正周期为,函数定义域为,,函数不是奇函数,故B错误.C选项:其定义域为,,函数为奇函数,其最小正周期为,故C正确.D选项:函数定义域为,,函数为偶函数,其最小正周期,故D错误.故选:C.3、D【解析】.选D4、D【解析】取BC的中点P,连接PE,PF,则∠FPE(或补角)是AB与CD所成的角,利用勾股定理可求该角为直角.【详解】如图,取BC的中点P,连接PE,PF,则PF//CD,∠FPE(或补角)是AB与CD所成的角,∵AB=6,CD=8,∴PF=4,PE=3,而EF=5,所以PF2+P故选:D.【点睛】本题考查异面直线所成的角,此类问题一般需要通过平移构建平面角,再利用解三角形的方法求解.5、D【解析】根据直线是否过原点进行分类讨论,结合截距式求得直线方程.【详解】当直线过原点时,直线方程为,即.当直线不过原点时,设直线方程为,代入得,所以直线方程为.故选:D6、B【解析】直线的斜率,其倾斜角为.考点:直线的倾斜角.7、B【解析】利用对数函数以及指数函数的性质判断即可.【详解】∵,∴,∵,∴,∵,∴,则故选:.8、D【解析】解:该几何体是一个底面半径为1、高为4的圆柱被一个平面分割成两部分中的一个部分,故其体积为.本题选择D选项.9、B【解析】作出可行域,由目标函数仅在点取最大值,分,,三种情况分类讨论,能求出实数的取值范围.然后求解到直线的距离的表达式,求解最值即可详解】解:由约束条件作出可行域,如右图可行域,目标函数仅在点取最大值,当时,仅在上取最大值,不成立;当时,目标函数的斜率,目标函数在取不到最大值当时,目标函数的斜率,小于直线的斜率,综上,原点到直线的距离则原点到直线的距离的取值范围是:故选B【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意线性规划知识的合理运用.10、A【解析】分析:如图所示,连接AC、BD相交于点O,连接EM,EN(1)由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC.可得AC⊥平面SBD.由已知E,M,N分别是BC,CD,SC的中点,利用三角形的中位线可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,进而得到AC⊥平面EMN,AC⊥EP;(2)由异面直线的定义可知:EP与BD是异面直线,因此不可能EP∥BD;(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;(4)由(1)同理可得:EM⊥平面SAC,可用反证法证明:当P与M不重合时,EP与平面SAC不垂直详解:如图所示,连接AC、BD相交于点O,连接EM,EN对于(1),由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确故选A点睛:本题考查了空间线面、面面的位置关系判定,属于中档题.对于这种题目的判断一般是利用课本中的定理和性质进行排除,判断.还可以画出样图进行判断,利用常见的立体图形,将点线面放入特殊图形,进行直观判断.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作出函数的图象,设,求出的取值范围以及的值,由此可求得的取值范围.【详解】作出函数的图象,设,如下图所示:二次函数的图象关于直线对称,则,由图可得,可得,解得,所以,.故答案为:.【点睛】关键点点睛:本题考查零点有关代数式的取值范围的求解,解题的关键在于利用利用图象结合对称性以及对数运算得出零点相关的等式与不等式,进而求解.12、【解析】根据对数函数的图象和性质可得,函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,即,或,分别解不等式组,可得答案【详解】若函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,则,或当时,解得<a<1,当时,不等式无解.综上实数的取值范围是(,1)故答案为(,1).【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.13、1【解析】依题意可得,,则,解得当时,,则所以为奇函数,满足条件,故14、【解析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【点睛】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.15、3【解析】,故答案为3.16、【解析】利用诱导公式一化简,再求特殊角正弦值即可.【详解】.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期,单调递减区间为;(2)最小值为0;最大值为3.【解析】(1)将函数化为,可得最小正周期为,将作为一个整体,代入正弦函数的递减区间可得结果.(2)由,得,结合正弦函数的图象可得所求最值试题解析:(1)∴函数的最小正周期由,,得,,∴函数的单调递减区间为(2)∵,∴∴,∴当,即时,取得最小值为0;当,即时,取得最大值为3.18、(1)0.08(2)120【解析】理解题意,根据数据列式求解【小问1详解】由题意,该校往年每年的招生人数为,“衣物翻新”专业直接就业的学生人数为,所以所求的概率为【小问2详解】由表格中的数据,可得往年各专业直接就业的人数分别为,,,,,,往年全校整体的就业率为,招生人数调整后全校整体的就业率为,解得19、(1);(2)时,有最小值,时,有最大值2.【解析】(1)若选①,根据周期求出,然后由并结合的范围求出,最后求出答案;若选②,根据周期求出,然后由并结合的范围求出,最后求出答案;(2)结合(1),先求出的范围,然后结合正弦函数的性质求出答案.【小问1详解】若选①,由题意,,因为函数的图象关于点对称,所以,而,则,于是.若选②,由题意,,因为函数的图象关于直线对称,所以,而,则,于是.【小问2详解】结合(1),因为,所以,则当时,有最小值为,当时,有最大值为.20、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据表中已知数据,解得.数据补全如下表:00500且函数表达式为.(Ⅱ)由(Ⅰ)知,得因为对称中心为,令,解得,由于函数的图象关于点成中心对称,令,解得,.由可知,当时,取得最小值.考点:“五点法”画函数在某一个周期内的图象,三角函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论