版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设集合,集合,则等于()A(1,2) B.(1,2]C.[1,2) D.[1,2]2.若实数,满足,则的最小值是()A.18 B.9C.6 D.23.下列全称量词命题与存在量词命题中:①设A、B为两个集合,若,则对任意,都有;②设A、B为两个集合,若,则存在,使得;③是无理数,是有理数;④是无理数,是无理数.其中真命题的个数是()A.1 B.2C.3 D.44..已知集合,集合,则()A. B.C. D.5.玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.玉雕壁画是采用传统的手工雕刻工艺,加工生产成的玉雕工艺画.某扇形玉雕壁画尺寸(单位:)如图所示,则该壁画的扇面面积约为()A. B.C. D.6.如图,在菱形ABCD中,下列式子成立的是A. B.C. D.7.函数的定义域是()A.(-2,] B.(-2,)C.(-2,+∞) D.(,+∞)8.已知全集,集合,则()A. B.C. D.9.函数的单调递减区间为()A. B.C. D.10.把表示成,的形式,则的值可以是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数在上单调递增,则实数a的取值范围为____.12.已知函数在区间,上恒有则实数的取值范围是_____.13.是第___________象限角.14.已知[x]表示不超过x的最大整数,定义函数f(x)=x-[x].有下列结论:①函数的图象是一条直线;②函数f(x)的值域为[0,1);③方程f(x)=有无数个解;④函数是R上的增函数.其中正确的是____.(填序号)15.记函数的值域为,在区间上随机取一个数,则的概率等于__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知如图,在直三棱柱中,,且,是的中点,是的中点,点在直线上.(1)若为中点,求证:平面;(2)证明:17.已知函数,.(1)求函数的最小正周期以及单调递增区间;(2)求函数在区间上的最小值及相应的的值.18.已知,,,为坐标原点.(1)若,求的值;(2)若,且,求.19.已知两个非零向量和不共线,,,(1)若,求的值;(2)若A、B、C三点共线,求的值20.假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间.问:离家前不能看到报纸(称事件)的概率是多少?(须有过程)21.已知一扇形的圆心角为,所在圆的半径为.(1)若,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积?
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】由指数函数、对数函数的性质可得、,再由交集的运算即可得解.【详解】因为,,所以.故选:B.【点睛】本题考查了指数不等式的求解及对数函数性质的应用,考查了集合交集的运算,属于基础题.2、C【解析】,利用基本不等式注意等号成立条件,求最小值即可【详解】∵,,∴当且仅当,即,时取等号∴的最小值为6故选:C【点睛】本题考查了利用基本不等式求和的最小值,注意应用基本不等式的前提条件:“一正二定三相等”3、B【解析】对于命题①②,利用全称量词命题与存在量词命题的定义结合集合包含与不包含的意义直接判断;对于命题③④,举特例说明判断作答.【详解】对于①,因集合A、B满足,则由集合包含关系的定义知,对任意,都有,①是真命题;对于②,因集合A、B满足,则由集合不包含关系的定义知,存在,使得,②是真命题;对于③,显然是无理数,也是无理数,则③是假命题;对于④,显然是无理数,却是有理数,则④是假命题.所以①②是真命题.故选:B4、A【解析】先将分别变形,然后根据数值的奇偶判断出的关系,由此求解出的结果.【详解】因为,所以,所以;又因为,所以,所以,又因为表示所有的奇数,表示部分奇数,所以;所以,故选:A.5、D【解析】利用扇形的面积公式,利用大扇形面积减去小扇形面积即可.【详解】如图,设,,由弧长公式可得解得,,设扇形,扇形的面积分别为,则该壁画的扇面面积约为.故选:.6、D【解析】解:利用菱形的性质可知,第一问中方向不同,错误;选项B中显然不共线,因此错误.,因此C不对;只有D正确7、B【解析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解【详解】解:由,解得函数的定义域是故选:B【点睛】本题考查函数的定义域及其求法,属于基础题8、A【解析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:,则.故选:A.9、A【解析】解不等式,,即可得答案.【详解】解:函数,由,,得,,所以函数的单调递减区间为,故选:A.10、B【解析】由结合弧度制求解即可.【详解】∵,∴故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由题意,利用复合函数的单调性,对数函数、二次函数的性质,求得的范围【详解】解:函数在上单调递增,函数在上单调递增,且,,解得,即,故答案:12、【解析】根据对数函数的图象和性质可得,函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,即,或,分别解不等式组,可得答案【详解】若函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,则,或当时,解得<a<1,当时,不等式无解.综上实数的取值范围是(,1)故答案为(,1).【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.13、三【解析】根据给定的范围确定其象限即可.【详解】由,故在第三象限.故答案为:三.14、②③##③②【解析】画出的图象,即可判断四个选项的正误.【详解】画出函数的图象,如图所示,可以看出函数的图象不是一条直线,故A错误;函数f(x)的值域为,故②正确;方程有无数个解,③正确;函数是分段函数,且函数不是R上的增函数,故④错误.故答案为:②③15、【解析】因为;所以的概率等于点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见解析;(2)见解析【解析】(1)取中点为,连接,,首先说明四边形是平行四边形,即可得,根据线面平行判定定理即可得结果;(2)连接,利用得到,再通过平面得到,进而平面,即可得最后结果.【详解】(1)证明:取中点为,连接,,在中,,又所以,,即四边形是平行四边形.故,又平面,平面,所以,平面.(2)证明:连接,在正方形中,,所以,与互余,故,又,,,所以,平面,又平面,故又,所以平面又平面,所以【点睛】本题主要考查了线面平行的判定,通过线线垂直线面垂直线面垂直的过程,属于中档题.在证明线面平行中,常见的方法有以下几种:1、利用三角形中位线;2、构造平行四边形得到线线平行;3、构造面面平行等.17、(1);;(2);.【解析】(1)利用余弦函数的周期公式计算可得最小正周期,借助余弦函数单调增区间列出不等式求解作答.(2)求出函数的相位范围,再利用余弦函数性质求出最小值作答.【小问1详解】函数中,由得的最小正周期,由,解得,即函数在上单调递增,所以的最小正周期是,单调递增区间是.【小问2详解】当时,,则当,即时,,所以函数的最小值为,此时.18、(1)(2)【解析】(1)由向量平行的坐标运算列式直接求解即可;(2)先求得的坐标,利用坐标表示向量的模长,列方程求得,从而得,利用向量坐标表示数量积即可得解.【详解】(1)依题,,因,所以,所以(2)因为,所以,所以,因为,所以,所以,所以【点睛】本题主要考查了向量的坐标运算,包括共线、模长、数量积,属于基础题.19、(1)-1(2)-1【解析】(1)根据即可得出,,由即可得出1+k=0,从而求出k的值;(2)根据A,B,C三点共线即可得出,从而可得出,根据平面向量基本定理即可得出,解出k即可【详解】解:(1);∴=;∵;∴k+1=0;∴k=-1;(2)∵A,B,C三点共线;∴;∴;∴;∵不共线;∴由平面向量基本定理得,;解得k=-1【点睛】本题考查向量减法的几何意义,以及向量的数乘运算,平面向量基本定理20、.【解析】设送报人到达的时间为X,小王离家去工作的时间为Y,(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|6≤X≤8,7≤Y≤9}一个正方形区域,求出其面积,事件A表示小王离家前不能看到报纸,所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}
求出其面积,根据几何概型的概率公式解之即可;试题解析:如图,设送报人到达的时间为,小王离家去工作的时间为.(,)可以看成平面中的点,试验的全部结果所构成的区域为一个正方形区域,面积为,事件表示小王离家前不能看到报纸,所构成的区域为即图中的阴影部分,面积为.这是一个几何概型,所以.答:小王离家前不能看到报纸的概率是0.125.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率21、(1);(2)见解析【解析】(1)根据弧长的公式和扇形的面积公式即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级政治尊重他人是我的需要课件
- 液压与气动技术 课件 模块四 课题14
- 单位管理制度集合大合集职工管理篇
- 单位管理制度集粹汇编员工管理
- 议论文结构的六种模式
- 单位管理制度汇编大合集人员管理
- 单位管理制度分享大全【人力资源管理】十篇
- 单位管理制度范例合集员工管理篇十篇
- 单位管理制度呈现合集【人力资源管理篇】十篇
- 万有引力定律复习课件
- 2024版房屋市政工程生产安全重大事故隐患判定标准内容解读
- 江苏省镇江市实验学校2023-2024学年九年级上学期期末考试化学试卷
- 期末 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- GB/T 32066-2024煤基费托合成液体石蜡
- 塔吊运行作业方案
- 重庆中考数学最新26题练习及答案
- 江苏卫视跨年演唱会电视转播技术方案-209年精选文档
- 水电工程施工机械台时费定额(2004年版)
- 钢铁企业安全生产事故案例汇编
- 安庆市农业雪灾恢复重建和救灾资金使用情况总结
- 食品工程原理课程设计搅拌器的设计
评论
0/150
提交评论