任务-1讲义-v12016cfa一级基础数量组合_第1页
任务-1讲义-v12016cfa一级基础数量组合_第2页
任务-1讲义-v12016cfa一级基础数量组合_第3页
任务-1讲义-v12016cfa一级基础数量组合_第4页
任务-1讲义-v12016cfa一级基础数量组合_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【梦轩考 专业提供CFAFRM全 ),'▁ঃ׀੟੟tativeԥ㩮䙹୐३ݾਃ୐୐TopicTopicWeightingsinCFALevelSessionStudySessionEthics&ProfessionalStudySession2-StudySession4-StudySession7-FinancialReportingandStudySessionCorporate7StudySessionPortfolioManagementandWealth7StudySession13-EquityStudySession15- StudySession5StudySessionAlternative4tativeTimeValueR5TheTimeValueofR6DiscountedCashFlowProbability&R7StatisticalConceptsandMarketR8ProbabilityR9CommonProbabilityInferentialR10SamplingandR11HypothesisTechnicalR12Technical【梦轩考 专业提供CFAFRM全 R5TimeValueofTimeValueofRequiredinterestrateonasecurityⲴ㓴AnnuitiesⲴ䇑㇇FV,PV,requiredR5TimeValueofRequiredrateofreturnaffectedbythesupplyanddemandoffundsinthethereturnthatinvestorsandsaversrequiretogetthemtowillinglylendtheirfunds;usuallyforparticularDiscountratetheinterestrateweusetodiscountpaymentstobemadeinusuallyusedinterchangeablywiththeinterestOpportunitycostalsounderstoodasaformofinterestrate.Itisthevaluethatinvestorsforgobychoosingaparticularcourseofaction.R5TimeValueofposerequiredrateofNominalrisk-freerate=realrisk-freerate+expectedinflationRequiredinterestrateona=nominalrisk-freerate+defaultriskpremium+liquidityriskpremium+maturityriskpremium㘳ሏᯩ⌅Realrisk-freerateਃnominalrisk-freerateⲴޣ【梦轩考 专业提供CFAFRM全 R5TimeValueofEARrmEAR(1+periodic 1 1 m䛓Ѹྲᯩᱟsemi,m=2;ྲᯩᱟquarterly,ྲᯩᱟ䘎㔝༽ᯩˈޜᔿᯩਈѪEAR=eannualint-ሏᯩ⌅㇇——㇇EARˈᡆᱟ㇇ᯩ⅑ᇊᙗ˄EARਃ䇑᚟⅑᚟ᴹޣThegreaterthecompoundingthegreatertheEARwillbeincomparisontothestatedthegreaterthedifferencebetweenEARandthestatedR5R5Example:TimeValueofAmoneymanagerhas$1,000,000toinvestforoneyear.Shehasidentifiedtwoalternativeone-year sofdeposit(CD)shownbelow:CompoundingAnnualinterestWhichCDhasthehighesteffectiveannualrate(EAR)andhowmuchinterestwillitearn?HighestInterestR5TimeValueofFuturevalue(FV):Amounttowhichinvestmentgrowsafteroneormorecompoundingperiods.Presentvalue(PV):CurrentvalueofsomefuturecashIfinterestsarecompoundedmtimesperyear,andinvest1Ifinterestsarecompoundedmtimesperyear,andinvestnFV=PV˄1+r/m˅mnWhere:misthecompoundingristhenominal/quotedannualinterestWhenwecalculatethefuturevalueofcontinuouslycompounding,formula FV=PVlim(1+ 【梦轩考 专业提供CFAFRM全程+讲R5TimeValueofWhat’s---isastreamofequalcashflowsthatoccursatequalintervalsoveragiven᚟ᇩN=numberofI/Y=interestrateperPV=presentPMT=amountofeachperiodicFV=futureሏᯩ⌅˖㇇——NI/Y,PMTFV,PVѝԫ᚟ᇊഋњˈ≲ਖཆаAnAnexampleofordinaryannuities˄ঃԈᒤ˅Example1:What’stheFVofanordinaryannuitythatpays150peryearattheendofeachofthenext15years,giventhediscountrateisSolutions:enterrelevantdataforN15,I/Y6,PMT-150,PV0,CPT→FVNotice:ifweweregiventhatFV=3491.4,N=15,I/Y=6,PMT=-150,wealsocouldcalculatePV. Ă Ă R5TimeValueofR5TimeValueofAboutanannuitydue˄ݸԈᒤDefinition:anannuitywheretheannuitypaymentsoccuratthebeginningofeachcompoundingperiod.Measure1:putthecalculatorintheBGNmodeandinputrelevantdata.Measure2:treatasanordinaryannuityandsimplymultipletheresultingPVby(1+I/Y)【梦轩考 专业提供CFAFRMConstructanamortizationscheduletoshowtheinterestandprincipalcomponentsoftheendofyearpaymentsfora10%,5year,$10,000loan.Theamountoftheloanpayments:N=5;I/Y=10;PV=$10,000;FV=0;CPT:【梦轩考 专业提供CFAFRMConstructanamortizationscheduletoshowtheinterestandprincipalcomponentsoftheendofyearpaymentsfora10%,5year,$10,000loan.Theamountoftheloanpayments:N=5;I/Y=10;PV=$10,000;FV=0;CPT:balancetozero.R5Example:TimeValueofAmortization12345R5Example:TimeValueofSupposeyoumustmakefiveannual$1,000payments,thefirstonestartingatthebeginningofYear4(endofYear3).Toaccumulatethemoneytomakethesepayments,youwanttomakethreeequalpaymentsintoaninvestmentaccount,thefirsttobemadeoneyearfromtoday.Assuminga10%rateofreturn,whatistheamountofthesethreeThefirststepinthistypeofproblemistodeterminetheamountofmoneythatmustbeavailableatthebeginningofYear4(t=3)inordertosatisfythepaymentrequirements.BGNmode:N=5;I/Y=10;PMT=-1,000;FV=0;CPT:DeterminetheamountofthethreeENDmode:N=3;I/Y=10;PV=0;FV=-4,169.87;CPT:R5TimeValueofAboutDefinition:Aperpetuityisafinancialinstrumentsthatpaysafixedamountofmoneyatsetintervalsoveraninfiniteperiodoftime. AAA (1 AAA 1r(1r)2(1 1r(1(2) r r【梦轩考 专业提供CFAFRM全 R6DiscountedCashFlowDiscountedCashFlowNPV&2.䇑㇇HPYˈEAYㅹ᚟⳺⦷ˈԕ৺ᆳԜ᚟ӂѻ䰤Ⲵ䖜3.Money-weightedreturn&Time-weightedR6R6DiscountedCashFlowNP CFNP CFCF(1r11CF(1rN22...CF(1rCFNNttt(1r 0 (1 (1 ... (1Nt (1WhenNPV=0,thediscountIRRmethodassumestheproject’scashflowswillbereinvestedattheIRR.MultiplesolutionsProblemoftheIRRcalculation(#signchanges)R6DiscountedCashFlowProjectDecisionSingleprojectNPVmethod:AcceptitifIRRmethod:AcceptitifIRR>r(requiredrateofTwoProjectsIndependentSimilartoSingleprojectsMutuallyExclusiveNPVmethod:ChoosetheonewithhigherIRRmethod:ChoosetheonewithhigherNPVandIRRmethodsmaywitheach 【梦轩考 专业提供CFAFRM CalabashCrabHouseisconsideringaninvestmentinkitchen-upgradeprojectswiththefollowingcashflows:AssumingCalabashhasa12.5percentcostofcapital,whichofthefollowinginvestmentdecisionshastheleastjustification?Accept:ProjectBbecausethenetpresentvalue(NPV)ishigherthanthatofProjectProjectAbecausetheIRRishigherthanthecostofProjectAbecausetheinternalrateofreturn(IRR)ishigherthanthatofProjectB.Correctanswer:Define:theholdingperiodreturnissimplythepercentagechangeinthevalueofaninvestmentovertheperioditishold.R6DiscountedCashFlowR6Example:DiscountedCashFlowProjectProjectInitialYearYearYearYearrr( tP1P0R6DiscountedCashFlow(1+BEY)22 (1HPY)365/t【梦轩考 专业提供CFAFRM全程+讲R6DiscountedCashFlowTheHPYistheactualreturnaninvestorwillreceiveifthemoneymarketinstrumentishelduntilmaturity.TheEAYistheannualizedHPYonthebasisofa365-dayyearandincorporatestheeffectsofcompounding.TherMMistheannualizedyieldthatisbasedonpriceanda360-dayyearanddosenotaccountfortheeffectsofcompounding–itassumessimpleinterest.R6Example:DiscountedCashFlowJanePeeblespurchasedaT-billthatmaturesin200daysfor$97,500.Thefacevalueofthebillis$100,000.Whatisthemoneymarketyieldonthebill?Correctanswer:R6Example:DiscountedCashFlowA175-dayT-billhasaneffectiveannualyieldof3.80%.Itsbankdiscountyieldisclosestto:Answer:Wouldaclientmakingadditionsorwithdrawalsoffundsmostlikelyaffecttheirportfolio’s:Correctanswer:Thetime-weightedreturnisnotaffectedbycashwithdrawalsoradditiontotheportfolio,themoney-weightedreturnmeasureWouldaclientmakingadditionsorwithdrawalsoffundsmostlikelyaffecttheirportfolio’s:Correctanswer:Thetime-weightedreturnisnotaffectedbycashwithdrawalsoradditiontotheportfolio,themoney-weightedreturnmeasurewouldbeaffectedbyclientadditionsorwithdrawals,ifaclientaddsfundsatafavorabletimethemoney-weightedreturnwillbeelevated.R6Example:DiscountedCashFlowR6DiscountedCashFlowMoney-weightedandtime-weightedRateoftime-weightedreturnᦼᨑᾲᘥ৺ޜᔿᾲᘥ˖Time-weightedrateofreturnmeasurescompound僔৺ޜᔿFirstly,computetheHPR;then,compute(1+HPR)foreachsubperiodtoobtainatotalreturnfortheentiremeasurementperiod[eg.(1+HPR1)*(1+HPR2)…(1+HPRn)].money-weightedreturnᦼᨑᾲᘥ৺ޜᔿᾲᘥ˖theIRRbasedonthecashflowsrelatedtothe↕僔৺ޜᔿ˖Firstly,determinethetimingofeachcashthen,usingthecalculationtocomputeIRR,orusinggeometricሏᯩ⌅˖㇇˗⌘᚟㇇timeweightedreturn᚟ྲHPRн⭘ᔰR6Example:DiscountedCashFlowAssumeaninvestorbuysashareofstockfor$100att=0andattheendofthenextyear(t=1),shebuysanadditionalsharefor$120.AttheendofYear2,theinvestorsellsbothsharesfor$130each.Attheendofeachyearintheholdingperiod,thestockpaida$2.00persharedividend.Whatisthemoney-weightedrateofWhatistheannualtime-weightedrateofMoney-weightedrateofreturn(IRR)Time-weightedrateofreturn(geometricmeanreturn)=Time-weightedMoney-weighted【梦轩考 专业提供CFAFRM全 R7StatisticalConceptsandMarketStatisticalTypesofmeasurementMeasuresofcentralMADਃVar䇑㇇ԕ৺∄Chebyshev’sCV&SharpSkewness&R7StatisticalConceptsandMarketDescriptiveSummarizetheimportantcharacteristicsoflargedataInferentialMakeforecasts,estimates,orjudgmentsaboutalargesetofdataonthebasisofthestatisticalcharacteristicsofasmallerset(asample)R7StatisticalConceptsandMarketTypesofmeasurementNominaldistinguishingtwodifferentthings,noorder,onlyhasexample:assigningthenumber1toamunicipalbondfund,thenumber2toacorporatebondfund.Ordinalscales(>,makingthingsinorder,butthedifferencearenotexample:therankingof1,000smallcapgrowthstocksbymaybedonebyassigningthenumber1tothe100bestperformingIntervalscales(>,<,+,-subtractisexample:Ratioscales(>,<,+,-,*,withoriginalexample:money,ifyouhavezerodollars,youhavenopurchasingbutifyouhave$4.00,youhavetwiceasmuchpurchasingpowerasawith$2.00.Absolute 33Absolute 335–0–5–10R7StatisticalConceptsandMarketAmeasureusedtodescribeacharacteristicofapopulationisreferredtoasaparameter.Inthesamemannerthataparametermaybeusedtodescribeacharacteristicofapopulation,asamplestatisticisusedtomeasureacharacteristicofasample.R7StatisticalConceptsandMarketRelativeTherelativefrequencyiscalculatedbydividingtheabsolutefrequencyofeachturnintervalbythetotalnumberofobservations.FrequencyAfrequencydistributionisatabularpresentationofstatisticaldatathataidstheysisoflargedatasets.Cumulativefrequency/CumulativeRelativeCouldbecalculatedbysummingtheabsoluteorrelativefrequenciesstartingatthelowestintervalandprogressingthroughthehighest.R7StatisticalConceptsandMarketFrequencyR7StatisticalConceptsandMarket【梦轩考 专业提供CFAFRM全 +讲R7StatisticalConceptsandMarketmidpointofeachintervalisplottedonthehorizontalaxis,midpointofeachintervalisplottedonthehorizontalaxis,andtheabsolutefrequencyforthatintervalisplottedontheverticalaxis.Histogramisgraphicalfrequencydistribution876543210NXi n n wiXi(w1X1w2i)NGN inn(1/XiiThearithmeticmeanTheweightedmeanThegeometricmeanTheharmonicmeanharmonicmean<=geometricmean<=arithmeticR7StatisticalConceptsandMarketR7Example:StatisticalConceptsandWhichisthemostHarmonic ArithmeticGeometric Correctanswer:【梦轩考 专业提供CFAFRM全 R7Example:StatisticalConceptsandMarket ystobtainsthefollowingannualratesofreturnforamutualReturnAnswer:Thefund’sannualholdingperiodreturnisclosestAnswer:R7Example:StatisticalConceptsandMarketAhypotheticalinvestmentinasinglestockinitiallycosts$100.oneyearlater,thestockistradingat$200.Attheendofthesecondyear,thestockpricefallsbacktotheoriginalpurchasepriceof$100.Nodividendarepaidduringthetwo-yearperiod.Calculatethearithmeticandgeometricmeanannualreturns.ReturninYear1=200/100-1=100%ReturninYear2=100/200-1=-50%Arithmeticmean=(100%-50%)/2=25%Geometricmean=(2.0h0.5)1/2–1=Thegeometricmeanreturnof0%accurayreflectsthattheendingvalueoftheinvestmentinYear2equalsthestartingvalueinYear1.Thecompoundrateofreturnontheinvestmentis0%.Thearithmeticmeanreturnreflectstheaverageoftheone-yearreturns.R7StatisticalConceptsandMarketTheuseofarithmeticmeanandgeometricmeanwhendetermininginvestmentreturnsThearithmeticmeanisthestatisticallybestestimatorofthenextyear’sreturnsgivenonlythethreeyearsofreturn Sincepastannualreturnsarecompoundedeachperiod,thegeometricmeanofpastannualreturnsistheappropriatemeasureofpastN inN()iForN inN()iFor i1 Nn( Xi i1 nR7StatisticalConceptsandMarketQuartileThethirdquartile:75%,orthree-fourthsoftheobservationsfallbelowthatvalue.CalculationLy=(n+1)y/100,LyistheObservers˖8101213151717181923N=11ˈLy=(11+1)*75%=9,i.e.the9thnumberisThethirdquartiles=R7R7StatisticalConceptsandMarketAbsolutedispersion:istheamountofvariabilitypresentwithoutcomparisontoanyreferencepointorben RangeRange umvalue–minimumR7StatisticalConceptsandMarketForanysetofobservations(samplesorpopulation),theproportionofthevaluesthatliewithinkstandarddeviationsofthemeanisatleast11/k2,wherekisanyconstantgreaterthan1.ሩԫօа㓴㿲⍻ˈњփ㩭᚟᚟ઘതkњḷ߶ᐞѻ᚟Ⲵᾲ⦷нሿҾ1/k2,ሩԫ᚟k>1DŽThisrelationshipappliesregardlessoftheshapeofthe【梦轩考 专业提供CFAFRM全 R7Example:StatisticalConceptsandAssumeasampleofbeerpricesisnegativelyskewed.Approximaywhatpercentageofthedistributionlieswithinplusorminus2.40standarddeviationsofthemean?Correctanswer:R7R7StatisticalConceptsandMarketCoefficientofvariationmeasurestheamountofdispersioninadistributionrelativetothedistribution’smean.(relativedispersion)CV=CV=sxXThesharpratiomeasuresexcessreturnperunitofR7StatisticalConceptsandMarketMeanMedian Positiveskewed˖Mode<median<mean,havingarightfatAreturndistributionwithpositiveskewhasfrequentsmalllossesandafewextremeNegativeskewed˖Mode>media>mean,havingaleftfatAreturndistributionwithnegativeskewhasfrequentsmallgainsandafewInvestorsshouldbeattractedbyapositiveskewbecausethemeanreturnfallsabove Sample (X

X (

XS ]()(n1)(n ሏᯩ⌅ṩᦞ᧿䘠Ⲵ᚟᚟ᱟPositivelyskewed䘈ᱟNegativeṩᦞᐢ⸕ ᓖˈ䘹᚟䜭ᴹଚӋ⢩⛩R7StatisticalConceptsandMarket【梦轩考 R7StatisticalConceptsandMarketLeptokurticvs.Itdealswithwhetherornotadistributionismoreorless“peaked”thananormalExcesskurtosis=samplekurtosis–NormalSampleExcessSample n(n (XiX (XiX i i1 (n1)(n2)(n 㘳ሏ᚟⌅˖ṩᦞ᧿䘠Ⲵ᚟᚟ᱟleptokurtic䘈ṩᦞᐢ⸕Ⲵጠᓖˈ䘹᚟䜭ᴹଚӋ⢩⛩ਟ᚟㘳䈅ѝՊਃskewਸᒦ㘳Ṩ㔬ਸ⸕R7StatisticalConceptsandMarketFatAleptokurticreturndistributionhasmorefrequentextremelylargedeviationsfromthemeanthananormaldistribution.R7Example:StatisticalConceptsandMarketABTheyststatedthatthedistributionnormaldistributionandthatthedistributleftsideofthedistribution.IstheyPorfolioforPortfolionforPost’sioAismorepeakedthanartfolioBhasalongtailontheentcorrectwithrespectto:oSolution:⳷㹗⺞⭤⭞⺞㦆㵧㏎Priori【梦轩考 专业提供CFAFRM全 ⳷㹗⺞⭤⭞⺞㦆㵧㏎PrioriR8ProbabilityProbabilityTwodefiningpropertiesofEmpirical,subjective,andprioriOddsfororMultiplicationruleandadditionDependentandindependentCovariance&Expectedvalue,variance,andstandarddeviationofarandomvariableandofreturnsonaportfolioBayes’R8ProbabilityBasicRandomvariableisuncertaineisanobservedvalueofarandomMutuallyexclusiveevents—cannotbothhappenatthesameExhaustiveevents—includeall TwoDefiningPropertiesof0≤P(E)≤P(E1)+P(E2)+……+R8ProbabilityR8Probability⳷㹗⺞㦆⭤⭞ㅌ Basedonintuitionorsubjective【梦轩考 专业提供CFAFRM全 R8ProbabilityEmpiricalprobability㓿ᾲeg.Historically,theDowJonesIndustrialAveragehasclosedhigherthanthepreviousclosetwooutofeverythreetradingdays.Therefore,theprobabilityoftheDowgoinguptomorrowistwo-thirds,or66.7%.Prioriprobabilityݸᾲeg.Yesterday,24ofthe30DJIAstocksincreasedinvalue.Thus,if1of30stocksisselectedatrandom,thereisan80%(24/30)probabilitythatitsvalueincreasedyesterdaySubjectiveprobabilityѫᾲwillclosehighertomorrowisR8ProbabilityOddsforanP(E)/(1-OddsagainstanLastyear,theaveragesalaryincreaseforPoultryResearchAssistantswas2.5percent.Ofthe10,000PoultryResearchAssistants,2,000receivedraisesinexcessofthisamount.TheoddsthataPoultryResearchAssistantreceivedasalaryincreaseinexcessof2.5percentare:1to2toCorrectanswer:R8ProbabilityUnconditionalProbability(marginalprobability):Conditionalprobability:【梦轩考 专业提供CFAFRM全 R8ProbabilityJointprobability:MultiplicationP(AB)=P(A|B)hP(B)=P(B|A)hP(A)IfAandBaremutuallyexclusiveevents,then:P(AB)=P(A|B)=P(B|A)=0ProbabilitythatatleastoneoftwoeventswillAdditionP(AorB)=P(A)+P(B)-IfAandBaremutuallyexclusiveevents,then:P(AorB)=P(A)+P(B)R8ProbabilityTheoccurrenceofAhasnoinfluenceofontheoccurrenceofP(A|B)=P(A)orP(AorB)=P(A)+P(B)-IndependenceandMutuallyExclusivearequiteIfexclusive,mustnotCauseexclusivemeansifAoccur,Bcannotoccur,AinfluentsR8Example:ProbabilityP(A)=0.5,P(B)=0.5,oddforconcurrentAandBis3/5,therelationshipbetweenAandB?MutuallyCorrectanswer:P(AB)=(3/5)/(1+3/5),P(A/B)=P(AB)/P(B)=3/4,P(A/B)нㅹҾP(A)【梦轩考 专业提供CFAFRM全 R8ProbabilityForunconditionalprobabilityofeventP(A P(AS1)P(S1 P(AS2)P(S2 ...P(ASN)P(SNwherethesetofeventsS1,S2,...SN ismutuallyexclusiveandExpectedvalue:E(X P(Xi xi*P(xi x1* x2*P(x2 xn*P(xnN P( EX iR8Example:ProbabilityAnystgatheredthefollowinginformation:theprobabilityofeconomyprosperityis75%,theprobabilityofeconomyrecessionis25%.Foracompany,whentheeconomyisprosperity,thereis10%ofprobabilitythatitsEPSis$2.0and90%ofprobabilitythattheEPSis$4.0.However,whentheeconomyisrecession,thereis25%ofprobabilitythattheEPSis$2.0and75%ofprobabilitythattheEPSis$4.0.Whatisthevarianceofthiscompany’sEPS,whentheeconomyisrecession?Correctanswer:WhentheeconomyE(EPS)=25%*2+75%*4=Var(EPS)=25%*(2-3.5)2+75%*(4-3.5)2=R8Probability Prob.Of Prob.Of E(EPS)18%1.8 42%1.7 24%1.316%1.01.51Thejointprobabilityofreturns,forsecuritiesAandB,Thejointprobabilityofreturns,forsecuritiesAandB,areasThecovarianceofthereturnsbetweensecuritiesAandBisclosest1224Correctanswer:R8Example:ProbabilityR8ProbabilityCovariancemeasureshowonerandomvariablemoveswithanotherrandomThecovarianceofRAwithitselfisequaltothevarianceofCovariancerangesfromnegativeinfinitytopositiveCOV(X,X)E[(XE(X))(X 2 E[(X-E(X))(Y- CorrelationmeasuresthelinearrelationshipbetweentworandomCorrelationhasnounits,rangesfrom–1to+1,standardizationofUnderstandthedifferencebetweencorrelationandIfρ=0,thisR8Example:ProbabilityThecovarianceofreturnsfortwomusthaveavaluebetween-1.0andmusthaveavalueequaltotheweightedaverageofthestandarddeviationsofthereturnsofthetwostockswillbepositiveiftheactualreturnsonbothstocksareconsistentlybelowtheirexpectedreturnsatthesametimeCorrectanswer:JointProbabilityFunctionofSecurityAandSecurityBReturns(Entriesarejointprobabilities)ReturnonsecurityReturnonsecurityReturnonsecurity0Returnonsecurity0Anindividualwantstoinvest$100,000andisconsideringthefollowingTheexpectedcorrelationofreturnsforthetwostocksis+0.5.Iftheinvestorinvests$40,000inStockAand$60,000inStockB,theexpectedstandarddeviationofreturnsontheportfoliowillbe:equaltolessthangreaterthan20.4%becausethecorrelationcoefficientisgreaterthanCorrectanswer:Anindividualwantstoinvest$100,000andisconsideringthefollowingTheexpectedcorrelationofreturnsforthetwostocksis+0.5.Iftheinvestorinvests$40,000inStockAand$60,000inStockB,theexpectedstandarddeviationofreturnsontheportfoliowillbe:equaltolessthangreaterthan20.4%becausethecorrelationcoefficientisgreaterthanCorrectanswer:R8Example:ProbabilityR8ProbabilityExpectedreturn,varianceandstandarddeviationofanE(rp wiE(Riin2 wwcov(R,Ri i1jExpectedStandardDeviationofABR8ProbabilityBayes’ P(A|B P(B|A)*P(P(B P(S|R) P(R|Si)P(Si) P(R)【梦轩考 专业提供CFAFRM全 R8Probability䇺ᯝᴹᴹ ᚟⋑Ӫ⋑䇺᚟ᴹ 䇺᚟⋑ R8ProbabilityMultiplication n1hn2h……hn nLabeling(or n1! nk r)! n R9CommonProbabilityCommonProbabilityPropertiesofdiscretedistributionandcontinuousUniformrandomvariableandabinomialrandomThekeypropertiesofthenormalStandardizearandomConfidenceintervalforanormallydistributedrandomLognormalSafety-firstMonteCarlo【梦轩考 专业提供CFAFRM全程+讲R9CommonProbabilityProbabilityDescribetheprobabilitiesofallthepossible esforarandomDiscreteandcontinuousrandomDiscreterandomvariables:thenumberofpossible escanbecounted,andforeachpossible e,thereisameasurableandpositiveprobability.Continuousvariables:thenumberofpossible esisinfinite,eveniflowerandupperboundsexist.P(x)=0eventhoughxcanPR9CommonProbabilityProbability Fordiscreterandom0≤p(x)≤Probabilitydensityfunction(p.d.f):ForcontinuousrandomvariableCumulativeprobabilityfunction(c.p.f):ProbabilityProbabilitydensity0R9CommonProbabilityBinomialBernoullirandom P(Y=0)=1-BinomialrandomvariableˈBinomialBernoullirandom P(Y=0)=1-Binomialrandomvariableˈtheprobabilityofxsuccessesinnp(x P( x)nxpxp)nExpectationsandR9CommonProbabilityR9Example:CommonProbabilityWhichofthefollowingstatementsaboutprobabilitydistributionsForaprobabilitydistributionforthenumberofdaystheairpollutionisaboveaspecifiedlevel,p(x)=0whenxcannotoccur,orp(x)>0whenitcan.Foraprobabilitydistributionforthespecificlevelofairpollutiononagivenday,p(x)=0evenifxcanoccur.AcumulativedistributionfunctiongivestheprobabilitythatarandomvariabletakesavalueequaltoorgreaterthanagivenCorrectanswer:Acumulativedistributionfunctiongivestheprobabilitythatarandomvariabletakesavalueequaltoorlessthanagivennumber:P(X≤x),orF(X).R9CommonProbabilityDiscreteAdiscreteuniformrandomvariableisoneforwhichtheprobabilitiesforallpossible esforadiscreterandomvariableareequal.Forexample,considerthediscreteuniformprobabilitydistributiondefinedasX={1,2,3,4,5},p(x)=0.2.Here,theprobabilityforeach eisequalto0.2[i.e.,Bernoullirandomvariablepp(1-Binomialrandomvariablenp(1-【梦轩考 专业提供CFAFRM全 R9CommonProbabilityContinuousUniform----isdefinedoverarangethatspansbetweensomelowerlimit,a,andupperlimit,b,whichserveastheparametersofthedistribution.PropertiesofContinuousuniformForalla≤x1<x2P(X<aorX>b)=P(x x2 (x x1)/(b R9Example:CommonProbabilityWhichofthefollowingstatementsaboutprobabilitydistributionsisAcontinuousuniformdistributionhasalowerlimitbutnoupperAcumulativedistributionfunctiondefinestheprobabilitythatarandomvariableisgreaterthanagivenvalue.Abinomialdistributioncountsthenumberofsuccessesthatoccurinafixednumberofindependenttrialsthathavemutuallyexclusive(i.e.yesorno) Correctanswer:Arandomvariablewithafinitenumberofequallylikely esisbestdescribedbya:BinomialBernoulliDiscreteuniformCorrectanswer:R9Example:CommonProbabilityArecentstudyindicatedthat60%ofallbusinesseshaveafaxmachine.Fromthebinominalprobabilitydistributiontable,theprobabilitythatexactlyfourbusinesseswillhaveafaxmachineinarandomselectionofsixbusinessesis:Correctanswer:Assumethat40%ofcandidateswhositfortheCFAexaminationpassitthefirsttime.Ofarandomsampleof15candidateswhoaresittingfortheexamforthefirsttime,whatistheexpectednumberofcandidatesthatwillpass?Correctanswer:【梦轩考 专业提供CFAFRM全 R9Example:CommonProbabilityAnysthasrecentlydeterminedthatonly60percentofallU.S.pensionfundshaveholdingsinhedgefunds.Inevaluatingthisprobability,arandomsampleof50U.S.pensionfundsistaken.ThenumberofU.S.pensionfundsinthesampleof50thathavehedgefundsintheirportfoliowouldmostaccuraybedescribedas:AbinomialrandomABernoullirandomAcontinuousrandomCorrectanswer:AnenergyystforecaststhatthepriceperbarrelofcrudeoilfiveyearsfromnowwillrangebetweenUSD$75andUSD$105.Assumingacontinuousuniformdistribution,theprobabilitythatthepricewillbelessthanUSD$80fiveyearsfromnowisclosestto:Correctanswer:R9CommonProbabilityTrackingerroristhedifferencebetweenthetotalreturnonaportfolioandthetotalreturnonthebenarkagainstwhichitsperformanceismeasured.R9CommonProbabilityTheshapeofthedensityxX~N(µ,Symmetricaldistribution:skewness=0;Alinearcombinationofnormallydistributedrandomvariablesisalsonormallydistributed.Thetailsgetthinandgotozerobutextendinfiniy,asympotic䘁R9CommonProbability【梦轩考 专业提供CFAFRM全R9CommonProbabilityTheconfidence68%confidenceinterval[,]90%confidenceinterval[1.651.6595%confidenceinterval[1.961.9699%confidenceinterval[2.582.58U2.58σU1.96σU U+1σU+1.96σUR9Example:CommonProbability ystdeterminedthatapproxima y99percentoftheobservationsofdailysalesforacompanywerewithintheintervalfrom$230,000to$480,000andthatdailysalesforthecompanywerenormallydistributed.Themeandailysalesandstandarddeviationofdailysales,respectively,forthecompanywereclosestto:Meandaily Standarddeviationofdaily Correctanswer:R9CommonProbabilityStandardnormalN(0,1)orStandardization:ifX~N(µ,σ²), X ~N(0,1)F(-z)1- 1【梦轩考 专业提供CFAFRM全 R9CommonProbabilityR9Example:CommonProbabilityAstudyofhedgefundinvestorsfoundthattheirannualhousehold esarenormallydistributedwithameanof$175,000andastandarddeviationof$25,000.F(1)=0.8413,F(2)=0.9772,F(3)=0.9987Thepercentofhedgefundinvestorsthat eslessthan$100,000isclosestThepercentofhedgefundinvestorsthat esgreaterthan$225,000isclosestThepercentofhedgefundinvestorsthat esgreaterthan$150,000isclosestR9CommonProba

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论