广西桂林十八中2022年高一上数学期末综合测试模拟试题含解析_第1页
广西桂林十八中2022年高一上数学期末综合测试模拟试题含解析_第2页
广西桂林十八中2022年高一上数学期末综合测试模拟试题含解析_第3页
广西桂林十八中2022年高一上数学期末综合测试模拟试题含解析_第4页
广西桂林十八中2022年高一上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数在区间上单调递增,则实数的取值范围为()A B.C. D.2.函数的图像可能是()A. B.C. D.3.四个函数:①;②;③;④的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是()A.④①②③ B.①④②③C.③④②① D.①④③②4.已知奇函数fx在R上是增函数,若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b5.已知实数集为,集合,,则A. B.C. D.6.设函数,则的奇偶性A.与有关,且与有关 B.与有关,但与无关C.与无关,且与无关 D.与无关,但与有关7.在平面直角坐标系中,大小为的角始边与轴非负半轴重合,顶点与原点O重合,其终边与圆心在原点,半径为3的圆相交于一点P,点Q坐标为,则的面积为()A. B.C. D.28.已知全集U=R,则正确表示集合M={0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A. B.C. D.9.已知,,则的值为A. B.C. D.10.函数在区间上的所有零点之和等于()A.-2 B.0C.3 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知奇函数满足,,若当时,,则______12.函数(且)的图象恒过定点_________13.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的直线方程是________.14.设,,依次是方程,,的根,并且,则,,的大小关系是___15.已知点,,则以线段为直径的圆的标准方程是__________16.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速v(单位:)可以表示为,其中L表示鲑鱼的耗氧量的单位数,当一条鲑鱼以的速度游动时,它的耗氧量的单位数为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的定义域为A,的值域为B(1)求A,B;(2)设全集,求18.已知函数是上的偶函数,当时,.(1)用单调性定义证明函数在上单调递增;(2)求当时,函数的解析式.19.函数的定义域为D,若存在正实数k,对任意的,总有,则称函数具有性质.(1)判断下列函数是否具有性质,并说明理由.①;②;(2)已知为二次函数,若存在正实数k,使得函数具有性质.求证:是偶函数;(3)已知为给定的正实数,若函数具有性质,求的取值范围.20.如图,在四棱锥中,,是以为斜边的等腰直角三角形,且.(1)证明:平面平面.(2)若四棱锥的体积为4,求四面体的表面积.21.已知向量,,设函数Ⅰ求函数的最小正周期和单调递增区间;Ⅱ求函数在区间的最大值和最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】函数为复合函数,先求出函数的定义域为,因为外层函数为减函数,则求内层函数的减区间为,由题意知函数在区间上单调递增,则是的子集,列出关于的不等式组,即可得到答案.【详解】的定义域为,令,则函数为,外层函数单调递减,由复合函数的单调性为同增异减,要求函数的增区间,即求的减区间,当,单调递减,则在上单调递增,即是的子集,则.故选:C.2、D【解析】∵,∴,∴函数需向下平移个单位,不过(0,1)点,所以排除A,当时,∴,所以排除B,当时,∴,所以排除C,故选D.考点:函数图象的平移.3、B【解析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到【详解】解:①为偶函数,它的图象关于轴对称,故第一个图象即是;②为奇函数,它的图象关于原点对称,它在上的值为正数,在上的值为负数,故第三个图象满足;③为奇函数,当时,,故第四个图象满足;④,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选:B【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.4、C【解析】由题意:a=f-且:log2据此:log2结合函数的单调性有:flog即a>b>c,c<b<a.本题选择C选项.【考点】指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.5、C【解析】分析:先求出,再根据集合的交集运算,即可求解结果.详解:由题意,集合,所以,又由集合,所以,故选C.点睛:本题主要考查了集合的混合运算,熟练掌握集合的交集、并集、补集的运算是解答的关键,着重考查了推理与运算能力.6、D【解析】因为当时,函数,为偶函数;当时,函数,为奇函数所以的奇偶性与无关,但与有关.选D7、B【解析】根据题意可得、,结合三角形的面积公式计算即可.【详解】由题意知,,,所以.故选:B8、A【解析】根据题意解得集合,再根据集合的关系确定对应的韦恩图.【详解】解:由题意,集合N={x|x2+x=0}={-1,0},∴,故选:A【点睛】本题考查了集合之间的关系,韦恩图的表示,属于基础题.9、A【解析】根据角的范围可知,;利用同角三角函数的平方关系和商数关系构造方程可求得结果.【详解】由可知:,由得:本题正确选项:【点睛】本题考查同角三角函数值的求解,关键是能够熟练掌握同角三角函数的平方关系和商数关系,易错点是忽略角的范围造成函数值符号错误.10、C【解析】分析:首先确定函数的零点,然后求解零点之和即可.详解:函数的零点满足:,解得:,取可得函数在区间上的零点为:,则所有零点之和为.本题选择C选项.点睛:本题主要考查三角函数的性质,函数零点的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,可得是以周期为周期函数,由奇函数的性质以及已知区间上的解析式可求值,从而计算求解.【详解】因为,即是以周期为的周期函数.为奇函数且当时,,,当时,所以故答案为:12、【解析】令对数的真数为,即可求出定点的横坐标,再代入求值即可;【详解】解:因为函数(且),令,解得,所以,即函数恒过点;故答案为:13、2x+y-14=0【解析】求出直线AB的斜率,即可得出高的斜率,由点斜式即可求出.【详解】由A,B两点得,则边AB上的高所在直线的斜率为-2,故所求直线方程是y-4=-2(x-5),即2x+y-14=0.故答案为:2x+y-14=0.14、【解析】本题首先可以根据分别是方程的根得出,再根据即可得出,然后通过函数与函数的性质即可得出,最后得出结果【详解】因为,,,所以,因为,,所以,,因为函数与函数都是单调递增函数,前者在后者的上方,所以,综上所述,【点睛】本题考查方程的根的比较大小,通常可通过函数性质或者根的大致取值范围进行比较,考查函数思想,考查推理能力,是中档题15、【解析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.16、8100【解析】将代入,化简即可得答案.【详解】因为鲑鱼的游速v(单位:)可以表示为:,所以,当一条鲑鱼以的速度游动时,,∴,∴故答案为:8100.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)由,可得定义域,由二次函数性质得得值域,即得;(2)根据集合运算法则计算【详解】(1)由得:,解得..∴,(2)由(1)得,∴.【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题18、(1)详见解析;(2).【解析】(1)利用单调性的定义即证;(2)当时,可得,再利用函数的奇偶性即得.【小问1详解】,且,则,∵,且,∴,∴,即,∴函数在上单调递增;【小问2详解】当时,,∴,又函数是上的偶函数,∴,即当时,.19、(1)具有性质;不具有性质;(2)见解析;(3)【解析】(1)根据定义即可求得具有性质;根据特殊值即可判断不具有性质;(2)利用反证法,假设二次函数不是偶函数,根据题意推出与题设矛盾即可证明;(3)根据题意得到,再根据具有性质,得到,解不等式即可.【详解】解:(1),定义域为,则有,显然存在正实数,对任意的,总有,故具有性质;,定义域为,则,当时,,故不具有性质;(2)假设二次函数不是偶函数,设,其定义域为,即,则,易知,是无界函数,故不存在正实数k,使得函数具有性质,与题设矛盾,故是偶函数;(3)的定义域为,,具有性质,即存在正实数k,对任意的,总有,即,即,即,即,即,即,通过对比解得:,即.【点睛】方法点睛:应用反证法时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.20、(1)见解析(2)9【解析】(1)由已知可得,根据线面垂直的判定得平面,进而可得平面,由面面垂直的判定可得证.(2)根据四棱锥的体积可得.过作于,连接,可证得平面,.可求得,可求得四面体的表面积.【详解】(1)证明:∵是以为斜边的等腰直角三角形,∴,又,∴平面,则.又,∴平面.又平面,∴平面平面.(2)解:∵,且,∴.∴.过作于,连接,∵.∴平面,则.∵.∴.∴.故四面体的表面积为.【点睛】本题考查面面垂直的证明,四棱锥的体积和表面积的计算,关键在于熟记各线面平行、垂直,面面平行、垂直的判定定理,严格地满足所需的条件,属于中档题.21、(Ⅰ)最小正周期是,增区间为,;(Ⅱ)最大值为5,最小值为4【解析】Ⅰ根据向量数量积,利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的周期公式可得函数的周期,利用正弦函数的单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论