版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.幂函数f(x)的图象过点(4,2),那么f()的值为()A. B.64C.2 D.2.已知点M与两个定点O(0,0),A(6,0)的距离之比为,则点M的轨迹所包围的图形的面积为()A. B.C. D.3.,,这三个数之间的大小顺序是()A. B.C. D.4.已知函数,则该函数的零点位于区间()A. B.C. D.5.下列函数中,既是偶函数,又在区间上是增函数的是()A. B.C. D.6.已知函数,且,则A. B.C. D.7.函数=的部分图像如图所示,则的单调递减区间为A. B.C. D.8.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,则()A. B.C. D.9.已知,若,则A.1 B.2C.3 D.410.为了鼓励大家节约用水,遵义市实行了阶梯水价制度,下表是年遵义市每户的综合用水单价与户年用水量的关系表.假设居住在遵义市的艾世宗一家年共缴纳的水费为元,则艾世宗一家年共用水()分档户年用水量综合用水单价/(元)第一阶梯(含)第二阶梯(含)第三阶梯以上A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.,,且,则的最小值为______.12.已知正数a,b满足,则的最小值为______13.对数函数(且)的图象经过点,则此函数的解析式________14.关于的不等式的解集是________15.夏季为旅游旺季,青岛某酒店工作人员为了适时为游客准备食物,调整投入,减少浪费,他们统计了每个月的游客人数,发现每年各个月份的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,游客人数基本相同;②游客人数在2月份最少,在8月份最多,相差约200人;③2月份的游客约为60人,随后逐月递增直到8月份达到最多.则用一个正弦型三角函数描述一年中游客人数与月份之间关系为__________;需准备不少于210人的食物的月份数为__________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,四棱锥中,底面是正方形,平面,,为与的交点,为棱上一点.(1)证明:平面平面;(2)若平面,求三棱锥的体积.17.将函数(且)的图象向左平移1个单位,再向上平移2个单位,得到函数的图象,(1)求函数的解析式;(2)设函数,若对一切恒成立,求实数的取值范围;(3)若函数在区间上有且仅有一个零点,求实数的取值范围.18.已知不等式的解集是(1)若且,求的取值范围;(2)若,求不等式的解集19.已知函数.(1)求函数的定义域;(2)若对任意恒有,求实数的取值范围.20.一次高三高考适应性测试,化学、地理两选考科目考生的原始分数分布如下:等级ABCDE比例约约约约约化学学科各等级对应的原始分区间地理学科各等级对应的原始分区间(1)分别求化学、地理两学科原始成绩分数的分位数的估计值(结果四舍五入取整数);(2)按照“”新高考方案的“等级转换赋分法”,进行等级赋分转换,求(1)中的估计值对应的等级分,并对这种“等级转换赋分法”进行评价.附:“”新高考方案的“等级转换赋分法”(一)等级转换的等级人数占比与各等级的转换分赋分区间等级ABCDE原始分从高到低排序的等级人数占比约约约约约转换分T的赋分区间(二)计算等级转换分T的等比例转换赋分公式:,其中分别表示原始分Y对应等级的原始分区间下限和上限;分别表示原始分对应等级的转换分赋分区间下限和上限(T的计算结果四舍五入取整数).21.已知函数;(1)求的定义域与最小正周期;(2)求在区间上的单调性与最值.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】设出幂函数,求出幂函数代入即可求解.【详解】设幂函数为,且图象过点(4,2),解得,所以,,故选:A【点睛】本题考查幂函数,需掌握幂函数的定义,属于基础题.2、B【解析】设M(x,y),由点M与两个定点O(0,0),A(3,0)的距离之比为,得:,整理得:(x+2)2+y2=16∴点M的轨迹方程是圆(x+2)2+y2=16.圆的半径为:4,所求轨迹的面积为:16π故答案为B.3、C【解析】利用指数函数和对数函数的性质比较即可【详解】解:因为在上为减函数,且,所以,因为在上为增函数,且,所以,因为在上为增函数,且,所以,综上,,故选:C4、B【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【详解】由题,,,,所以,故选:B【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题5、B【解析】先判断定义域是否关于原点对称,再将代入判断奇偶性,进而根据函数的性质判断单调性即可【详解】对于选项A,定义域为,,故是奇函数,故A不符合条件;对于选项B,定义域为,,故是偶函数,当时,,由指数函数的性质可知,在上是增函数,故B正确;对于选项C,定义域为,,故是偶函数,当时,,由对数函数的性质可知,在上是增函数,则在上是减函数,故C不符合条件;对于选项D,定义域为,,故是奇函数,故D不符合条件,故选:B【点睛】本题考查判断函数的奇偶性和单调性,熟练掌握函数的性质是解题关键6、A【解析】,,,,.故选:A.7、D【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.考点:三角函数图像与性质8、B【解析】由三角函数定义列式,计算,再由所给条件判断得解.【详解】由题意知,故,又,∴.故选:B9、A【解析】构造函数,则为奇函数,根据可求得,进而可得到【详解】令,则为奇函数,且,由题意得,∴,∴,∴.故选A【点睛】本题考查运用奇函数的性质求函数值,解题的关键是根据题意构造函数,体现了转化思想在解题中的应用,同时也考查观察、构造的能力,属于基础题10、B【解析】设户年用水量为,年缴纳税费为元,根据题意求出的解析式,再利用分段函数的解析式可求出结果.【详解】设户年用水量为,年缴纳的税费为元,则,即,当时,,当时,,当时,,所以,解得,所以艾世宗一家年共用水.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、3【解析】根据基本不等式“1”的用法求解即可.【详解】解:解法一:因为所以当且仅当时等号成立.解法二:设,,则,所以当且仅当时等号成立.故答案为:12、##【解析】右边化简可得,利用基本不等式,计算化简即可求得结果.【详解】,故,则,当且仅当时,等号成立故答案为:13、【解析】将点的坐标代入函数解析式,求出的值,由此可得出所求函数的解析式.【详解】由已知条件可得,可得,因为且,所以,.因此,所求函数解析式为.故答案为:.14、【解析】不等式,可变形为:,所以.即,解得或.故答案为.15、①.②.5【解析】设函数为,根据题意,即可求得函数的解析式,再根据题意得出不等式,即可求解.【详解】设该函数为,根据条件①,可知这个函数的周期是12;由②可知,最小,最大,且,故该函数的振幅为100;由③可知,在上单调递增,且,所以,根据上述分析,可得,解得,且,解得,又由当时,最小,当时,最大,可得,且,又因为,所以,所以游客人数与月份之间的关系式为,由条件可知,化简得,可得,解得,因为,且,所以,即只有五个月份要准备不少于210人的食物.故答案为:;.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见解析(2)【解析】(1)由,可推出平面,从而可证明平面平面;(2)由平面可推出是中点,因此.【详解】(1)平面,平面,,∵四边形是正方形,,,平面,平面,∴平面平面;(2)平面,平面平面,,是中点,是中点,.【点睛】本题考查面面垂直,考查空间几何体体积的求法,属于中档题.在解决此类几何体体积问题时,可利用中点进行转化.17、(1)(2)(3)【解析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所求范围;(3)将化简为,由题意可得只需在区间,,上有唯一解,利用图象,数形结合求得答案.【小问1详解】将函数且的图象向左平移1个单位,得到的图象,再向上平移2个单位,得到函数的图象,即:;【小问2详解】函数,,若对一切恒成立,则对一切恒成立,由在递增,可得,所以,即的取值范围是,;【小问3详解】关于的方程且,故函数在区间上有且仅有一个零点,等价于在区间上有唯一解,作出函数且的图象,如图示:当时,方程的解有且只有1个,故实数p的取值范围是.18、(1)(2)【解析】(1)根据且知道满足不等式,不满足不等式,解出即可得出答案(2)根据知道是方程的两个根,利用韦达定理求出a值,再带入不等式,解出不等式即可【详解】(1)(2)∵,∴是方程的两个根,∴由韦达定理得解得∴不等式即为:其解集为【点睛】本题考查元素与集合的关系、一元二次不等式与一元二次等式的关系,属于基础题19、(1)答案见解析;(2).【解析】(1)根据对数的真数为正即可求解;(2)对任意恒有对恒成立,参变分离即可求解a的范围.【小问1详解】由得,,等价于,∵方程的,当,即时,恒成立,解得,当,即时,原不等式即为,解得且;当,即,又,即时,方程的两根、,∴解得或,综上可得当时,定义域为,当时,定义域为且,当时,定义域为或;【小问2详解】对任意恒有,即对恒成立,∴,而,在上是减函数,∴,所以实数的取值范围为.20、(1);(2)化学和地理的等级分都是,评价见解析.【解析】(1)根据题目所给数据求得的估计值.(2)根据赋分公式求得化学和地理的等级分,并由此进行评价.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版换热站安装合同模板
- 2025借款合同的时效及相关难点
- 2024版房产委托代持合同
- 2025年广告制作合同书格式
- 二零二五年度住宅小区道路维修及养护合同3篇
- 2025年度消防器材安全宣传合同范本3篇
- 2024洗煤厂煤炭洗选技术研究租赁合同范本3篇
- 2025设备采购合同(详细)
- 2025版大数据分析股权三方转让及商业应用合同2篇
- 2024版建筑工程拆除及清理合同3篇
- 安全生产治本攻坚三年行动方案2024~2026(工贸)
- 2024版内蒙古自治区劳动合同书(临时工、季节工、农民轮换工)
- GB/T 23587-2024淀粉制品质量通则
- 急性化脓性中耳炎病人的护理课件
- 中小学美术教学论
- 中国急性缺血性卒中诊治指南(2023)解读
- 临床医学研究生毕业答辩模板
- 中药煎煮协议书
- 军工单位保密协议范本
- 2024-2029年盐酸咪达唑仑行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 南方的耕作制度
评论
0/150
提交评论