土木工程毕业设计外文翻译4_第1页
土木工程毕业设计外文翻译4_第2页
土木工程毕业设计外文翻译4_第3页
土木工程毕业设计外文翻译4_第4页
土木工程毕业设计外文翻译4_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1356/JOURNALOFSTRUCTURALENGINEERING/NOVEMBER2000Theeigenvalues␭iandeigenvectorsviofthecovariancema-trixsatisfy⍀vi=␭ivi(3)Here,aneigenvectorviisalsocalledaprincipalcomponent.Toreducethem-dimensionalvectoru(t)intoad-dimensionalvector,xv(t),whered<m,u(t)isprojectedontotheeigen-vectorscorrespondingtofirstdlargesteigenvaluesxTv(t)=[v1иииvd]u(t)(4)Featureextractionistheprocessofidentifyingdamage-sen-sitivepropertiesderivedfromthemeasuredvibrationresponsethatallowsonetodistinguishbetweentheundamagedanddamagedstructures.Typically,systematicdifferencesbetweentimeseriesfromtheundamagedanddamagedstructuresarenearlyimpossibletodetectbyeye.Therefore,otherfeaturesofthemeasureddatamustbeexaminedfordamagedetection.Inthisstudy,thecoefficientsofautoregressive(AR)modelsareselectedasdamagesensitivefeatures.Thetimeseriesfromanindividualmeasurementpoint,orthespatiallycompressedtimeseriesobtainedfromPCA,canbeusedtoconstructtheARmodels.IntheAR(n)model,thecurrentpointinatimeseriesismodeledasalinearcombinationofthepreviousnpointsny(t)=͸␾jy(tϪy)ϩe(t)(5)j=1wherey(t)=timehistoryattimet;␾j=unknownARcoeffi-cient;ande(t)=randomerrorwithzeromeanandconstantTheprecedingsectiondescribedmethodsforobtainingann-dimensionalfeaturespaceofARcoefficients.Insuchsitu-ationwheremultidimensionalfeaturevectorsexist,severalmonitoringproceduresmaybeemployedforfeaturevectordiscrimination.Forexample,eachARcoefficientcanbemon-itoredbyavarietyofstatisticalprocedures,orsimultaneousmonitoringofallARcoefficientscanbedoneusingmultivar-iatestatisticalprocedures.However,forfeaturevectorswithahighdimensionality,thefirstapproachcanresultinalargeamountofdatatobemonitored,andthevisualizationofthemultivariatedatacanbeverydifficult.Inthisstudythemul-tidimensionalfeaturevectorsareprojectedonto1Dsubspaces,andthestatisticaldiscriminationprocedureisappliedtothe1Dvariable.Twotransformations,linearandquadraticprojec-tions,arepresentedtomaximizetheseparationinfeaturesfromtheundamagedanddamagedstructures.naga(1990)showedthatadecisionboundaryD(x),basedonBayes’theoremminimizestheprobabilityoferror,whichistheprobabilityofmisclassificationofassigninganewfeaturetoclassAwhen,infact,itbelongstoclassB,orviceversa.IfclassesAandBhavenormaldistributions,theBayes’decisionruleD(x)canbewritteninaquadraticform(Fuku-naga1990)D(x)=xTQxϩVx(6)whereQ=quadraticprojectionmatrix;andV=linearpro-jection.InthecasewherethecovariancematricesforclassesAandBareidenticalmatrices,theclassificationboundarycanbefurthersimplifiedtoalinearformD(x)=FTx(7)TheQ,V,andFmatriceswillbeestimatedlaterinthissec-tion.Thedecisionrulecanalsobeviewedasaprojectionthatmapsmultidimensionalspacexto1DspaceD(x).Thepresentstudyisparticularlyinterestedindefiningatransformedfea-ture␶=D(x)suchthatthemeansoftwoclassesareasfaraspossibleandtheirvariancesarethesmallestpossibleafterei-therquadraticorlinearprojection.TheseprojectionscanbesoughtbymaximizingthefollowingFishercriterion(Bishop1995):f=(mAϪmB)2FT(mAϪmB)(mAϪmB)TF␴22=FT(⌺(8)Aϩ␴BAϩ⌺B)FwheremAandmB=meanvectorsoftheclassesAandBdistributions;⌺Aand⌺B=covariancematricesofeachclass;mAandmB=meansoftheprojectedfeatureinclassesAandB;and␴Aand␴B=correspondingstandarddeviationsofthetransformedfeatures,respectively.Furthermore,themomentsoftheprojectedfeaturearerelatedtothoseofthemultidi-mensionalfeaturevectorxasfollows:mi=FTmi;␴2=FTi⌺iFfori=AorB(9a,b)TakingderivativesoffwithrespecttoFandsettingthisquan-tityequaltozero,yieldsthefollowinglinearprojection(Bishop1995):F=2(⌺Aϩ⌺B)Ϫ1(mAϪmB)(10)Itisimportanttomentionthattheperformanceofthelinearclassifierwillnotbeoptimalunless⌺Aand⌺Barethesame.Itisonlyundertheassumptionofequalcovariancematricesthatthedecisionrolereducestoalinearone.ForthetestdataemployedintheApplicationtoConcreteColumnssectionbe-low,accelerationdatafromundamagedanddamagedclassesareobservedtohaveunequalcovariancematrices.BecausetheBayesiandecisionboundaryisquadraticunderthemoregen-eralcircumstanceofunequalcovariancematricesbetweenclasses,thequadratictransformationyieldsthebestdiscrimi-nationpower.ThecalculationofthequadratictermQandlineartermVin(6)iscomputationallymoreintensivethanthelinearcase.However,introducinganewvariableyi,whichrepresentstheproductoftwoxis,(6)canbelinearizedinthefollowingform(Fukunaga1990):1)/2nD(x)=͸͸nnn(nϩqijxixjϩvixi=i=1j=1͸ni=1͸aiyiϩi(11)i=1͸vixi=1whereqijandvi=componentsofQandV,respectively;yirepresentstheproductofthexjsandai=correspondingentryintheQmatrix.Inaddition,nistheorderoftheARmodelorthedimensionofARcoefficientsdefinedin(5).JOURNALOFSTRUCTURALENGINEERING/NOVEMBER2000/1357LetYandXdenotecolumnvectorsofyisandxjs,respec-tively.Now,thefollowingequationanalogoustothelinearcasecanbesolvedforQandVbyintroducinganewvariablevectorZ=[YTXT]TandlettingEandSbetheexpectedvectorandcovariancematrixofZ,respectively[aϪ11иииan(nϩ1)/2v1иииvn]T=2[SAϩSB](EAϪEB)(12)ThenaisandvjscanberearrangedtoformtheQmatrixandVvector.Notethattheprojectiontechniquespresentedhereareusedforadimensionalityreductionpurposeaswellasforconstructionofadiscriminantfunction.Thatis,then-dimensionalARcoefficientspaceisprojectedontoasinglescalarspacemaximizingthemeandifferencesbetweentwoclasses.Damagediagnosisisconductedonthetransformedfeatureusingthestatisticalprocesscontrol(SPC)techniquedescribedinthefollowingsection.STATISTICALMODELING—SPCStatisticalmodeldevelopmentisconcernedwiththeimple-mentationofthealgorithmsthatanalyzethedistributionofextractedfeaturestodeterminethedamagestateofthestruc-ture.Thealgorithmsusedinstatisticalmodeldevelopmentfallintothethreegeneralcategories:(1)Groupclassification;(2)regressionanalysis;and(3)outlierdetection.Theappropriatealgorithmtousewilldependontheabilitytoperformsuper-visedorunsupervisedlearning.Here,supervisedlearningre-ferstothecasewhereexamplesofdatafromdamagedandundamagedstructuresareavailable.Unsupervisedlearningre-ferstothecasewheredataareonlyavailablefromtheundam-agedstructure.Thispaperfocusesonunsupervisedlearningmethods.Inthisstudy,controlchartanalysis,whichisthemostcom-monlyusedSPCtechniqueandverysuitableforautomatedcontinuoussystemmonitoring,isappliedtotheselectedfea-turestoinvestigatetheexistenceofdamageinthestructureofinterest.Whenthesystemofinterestexperiencesabnormalconditions,themeanand/orvarianceoftheextractedfeaturesareexpectedtochange.HereanX-barcontrolchartisem-ployedtomonitorthechangesoftheselectedfeaturemeansandtoidentifysamplesthatareinconsistentwiththepastdatasets.ApplicationoftheScontrolchart,whichmeasuresthevariabilityofthestructureovertime,tothecurrentteststruc-tureispresentedinFugateetal.(2000).SeveralvariationsofthecontrolchartscanbefoundinMontgomery(1997).Tomonitorthemeanvariationofthefeatures,thefeatures(i.e.,theARcoefficientsorthetransformedfeatureafterlinearorquadraticprojection)arefirstarrangedinsubgroupsofsizep.Thevariable␶ijisthejthfeaturefromtheithsubgroup.Thesubgroupsizepisoftentakentobe4or5(Montgomery1997).Ifpischosentoolarge,adriftpresentintheindividualsubgroupmeanmaybeobscured,oraveragedout.Anaddi-tionalmotivationforusingsubgroups,asopposedtoindivid-ualobservations,isthatthedistributionofthesubgroupmeanvaluescanbereasonablyapproximatedbyanormaldistribu-tionasaresultofcentrallimitNext,thesubgroupmeanX¯theorem.iandstandarddeviationSiofthefeaturesarecomputedforeachsubgroup(i=1,...,q,whereqisthenumberofsubgroups)X¯i=mean(␶ij);Si=std(␶ij)(13a,b)Here,themeanandstandarddeviationarewithrespecttopobservationsineachsubgroup.Finally,anX-barcontrolchartisconstructedbydrawingacenterline(CL)atthesubgroupmeanandtwoadditionalhorizontallinescorrespondingtotheupperandlowercontrollimits(UCLandLCL)versussub-groupnumbers(orwithrespecttotime).Thecenterlineandtwocontrollimitsaredefinedasfollows:1358/JOURNALOFSTRUCTURALENGINEERING/NOVEMBER2000UCL,LCL=CLϮZS␣/2͙n;CL=mean(X¯i)(14a,b)wherethecalculationofmeaniswithrespecttoallsubgroupsbyaveragingtheiofNotethat,ifX¯subgroups:S=mean(Si).monitoringofdamageoccurrenceisperformedbyplottingX¯ivaluesobtainedfromthenewdatasetalongwiththeprevi-ouslyconstructedcontrollimits.APPLICATIONTOCONCRETECOLUMNSAhydraulicactuatorwasusedtoapplylateralloadstothetopofthecolumninaquasi-staticcyclicmanner.Theloadswerefirstappliedinaforce-controlledmannertoproducelat-eraldeformationsatthetopofthecolumncorrespondingto0.25⌬yT,0.5⌬yT,0.75⌬yT,and⌬yT.Here,⌬yTisthelateraldeformationatthetopofthecolumncorrespondingtothetheoreticalfirstyieldofthelongitudinalreinforcement.Thestructurewascycledthreetimesateachoftheseloadlevels.Next,alateraldeformationcorrespondingtotheactualfirstyield⌬ywasestimatedbasedontheobservedresponse.Loadswerethenappliedinadisplacement-controlledmanner,againinsetsofthreecycles,atdisplacementscorrespondingto1.5⌬y,2.0⌬y,2.5⌬y,etc.,untiltheultimatecapacityofthecolumnwasreached.Vibrationtestswereconductedonthecolumninitsundam-agedstate,andaftercyclicloadingatthesubsequentdisplace-Operationalevaluationbeginstosetthelimitationsonwhatwillbemonitoredandhowtoperformthemonitoringaswellastailoringthemonitoringtouniqueaspectsofthesystemanduniquefeaturesofthedamagethatistobedetected.Becausetheteststructurewasalaboratoryspecimen,operationaleval-uationwasnotconductedinamannerthatwouldtypicallybeappliedtoaninsitustructure.However,becausethevibrationtestswerenottheprimarypurposeofthisinvestigation,com-promiseshadtobemaderegardingthemannerinwhichthevibrationtestswereconducted.Theprimarycompromisewasassociatedwiththemountingoftheshaker,whereitwouldhavebeenpreferabletosuspendtheshakerfromsoftsupportsandtoapplytheinputatapointlocationusingastinger.Thesecompromisesareanalogoustooperationalconstraintsthatmayoccurwithinsitustructures.Environmentalvariabilitywasnotconsideredanissuebecausethetestswereconductedinalab-oratorysetting.Theavailabledynamicmeasurementhardwareandsoftwareplacedtheonlyconstraintsonthedataacquisi-tionprocess.DataAcquisitionandCleansingFortyaccelerometersweremountedonthestructureasshowninFig.1.Theselocationswereselectedbasedontheinitialdesiretomeasuretheglobalbendingandaxialandtor-sionalmodesofthecolumn.Notethatatlocations2,39,and40theaccelerometershadanominalsensitivityof10mV/gandwerenotsensitiveenoughforthemeasurementsbeingmade.Atlocations33–37theaccelerometershadanominalsensitivityof100mV/g.Allotherchannelshadaccelerometerswithanominalsensitivityof1V/g.Anaccelerometerontheslidingmassoftheshakerprovidedameasureoftheinputforceappliedtothecolumn.Analogsignalsfromtheaccel-erometersweresampledanddigitizedwithacommercialdy-namicdataacquisitionsystem.Dataacquisitionparameterswerespecifiedsuchthat8-stimehistoriesdiscretizedwith8,192pointswereacquired.Nowindowingfunctionwasap-pliedtothesetimehistories.ThePCA,SPC,andprojectiontechniquesareillustratedus-ingthevibrationtestdataobtainedfromthetestcolumnshowninFig.1.First,theapplicabilityofSPCtothedamagediag-nosisproblemisdemonstratedusingasingleARcoefficientobtainedfromindividualmeasurementpoint.Here,theARcoefficientsaredefinedasdamaged-sensitivefeatures,andthesubsequentcontrolchartanalysisisconductedusingtheARcoefficient(seeStatisticalModeling—X-BarControlChartUsingSingleARCoefficientsectionbelow).Next,theadvan-tageofprojectiontechniquesisinvestigated.Linearandquad-raticprojectionsareintroducedtomapmultidimensionalARcoefficientspaceinto1Dspacetomaximizethemeandiffer-encesbetweenthedatasetsobtainedfromtheundamagedanddamagedclasses(seeFalse-PositiveAlarmTesting).SPCanal-ysesarethenconductedonthetransformedsingle-scalefea-ture.Finally,PCAiscarriedouttoallresponsetimeseriesforspatialdimensionalityreductionpriortofeatureselectionandSPCanalysis(seePCAsectionbelow).Thatis,alltimeseriesfrom39responsepointsareprojectedontothefirstprincipalJOURNALOFSTRUCTURALENGINEERING/NOVEMBER2000/1359FIG.2.TABLE1.X-BarControlChartUsingFirstARCoefficientOutlierNumbersofX-BarControlChartUsingDifferentARCoefficientsDamageLevelARcoefficient␣1␣2␣3Totalnumberofoutliers00/1280/1282/128a10/1280/1281/1281/384(0.26)26/1286/12812/12824/384(6.25)36/12810/12831/12847/384(12.24)42/12830/12877/128109/384(28.39)51/12823/12888/128112/384(29.17)2/384(0.52)1/128ponentofthecovariancematrixofthetimeseries.ThesubsequentfeatureselectionandSPCanalysesareperformedbasedonthissingletimeseries,whichisalinearcombinationofthe39measuredtimeseries.StatisticalModeling—X-BarControlChartUsingSingleARCoefficientThe8,192-pointmeasuredtimeseriesarefirstdividedinto51216-pointtimewindows,andAR(3)isfittoanindividualwindowresultingin512setsofARcoefficients.Then,usingsubgroupsize4,128(=512/4)subgroupmeansareobtained.Fig.2showsthedamagediagnosisresultsusingthefirstco-efficientoftheAR(3)model.Timehistoriesfrommeasurementpoint1showninFig.1areusedfortheconstructionofthecontrolchart.UCL,LCL,andCLdenotetheupperandlowercontrollimits,andcenterlineobtainedfromthetimeseriesoftheundamagedstructure.Thecontrollimitscorrespondingtoa99%confidenceintervalareconstructedbysetting␣=0.01in(14).Aftertheconstructionofthecontrollimits,damagediagnosesusingtheX-barchartareperformedforsubsequentdamagelevels1–5.Notethattheextractedfeature␶(thefirstARcoefficientin1360/JOURNALOFSTRUCTURALENGINEERING/NOVEMBER2000thiscase)isstandardizedpriortotheconstructionoftheX-barcontrolchart:Themeanissubtractedfromthefeatureandthefeatureisnormalizedbythestandarddeviation.Therefore,CLforallfiguresinthispapercorrespondstozero.Afteres-tablishingthecontrollimitsandcenterline,featuresobtainedateachdamagelevelareplottedrelativetothecontrollimitsandcenterlineobtainedfromtheundamageddata.Theoutliers,whicharesamplesoutsidethecontrollimits,areindicatedbya‘‘ϩ’’inFig.2.Thefeaturesextractedateachdamagelevelarealsostandardizedinthesamefashionasbefore.Notethatthemeanandstandarddeviationestimatedfromdamagelevel0areusedtonormalizedatafromallofthesubsequentdamagelevels.ThediagnosisresultsusingtheotherARcoefficientsarealsosummarizedinTable1.Forthisparticularexample,thethirdARcoefficientseemsmostindicativeofdamage,andthefirstcoefficientisveryinsensitivetodamage.Fordamagelev-els0and1,thenumbersoftotaloutliersoutof384samplesare2and1,respectively.(TherearethreeARcoefficientsand128samplesforeachARcoefficient.Therefore,atotalof384samplesareobtained.)Theseareequivalentto0.52and0.26%ofoutliers.Consideringthefactthattheconstructedcontrollimitscorrespondtoa99%confidenceinterval,featuresex-TABLE2.OutlierNumbersofX-BarControlChartUsingLinearorQuadraticProjectionDamageLevelProjectionLinearQuadratica01/128a3/12815/1283/128224/12834/1283125/128128/1284121/128127/1285127/128128/1281/128indicatesthatasingleoutlierexistsoutof128sampledatapoints.tractedfromthein-controlsystemcanstillproduceapproxi-mately1%oftheoutlierswithoutindicatinganydamage.Therefore,itisnotclearifthesystemexperiencedanysignif-icantdamageatdamagelevel1basedontheanalysisoftheX-barcontrolchartusingtheindividualARcoefficient.StatisticalModeling—ControlChartAnalysisafterLinearorQuadraticProjectionNext,theprojectiontechniquesareincorporatedintotheX-barcontrolchart.Asshowninthepreviousexample,someARcoefficientsaremoresensitivetodamagethanothers.Fur-thermore,constructingseparatecontrolchartsforeachARco-efficientwouldbetimeconsuming.Toovercomethesediffi-culties,theconstructionofmultiplecontrolchartsusinganindividualARcoefficientissimplifiedintoasinglecontrolchartusinga1Dtransformedfeature.Inthefollowingexam-ples,the3DARcoefficientsarefirstprojectedontoa1Dspace,andtheX-barchartisconstructedbasedonthetrans-formedfeature.Ingeneral,theprojectionontoa1Dspaceleadstoalossofinformation,andclasseswellseparatedintheoriginalmultidimensionalspacemaybestronglyover-lappedintheprojectedspace.However,byusingtheFishercriterionin(8),theprojectionsaredeterminedtomaximizetheclassseparation.Table2showstheresultsofprocessmonitoringafteralin-earprojection.ComparisonofTable1andTable2clearlyre-vealstheimprovementofdiagnosisperformance.Again,thediagnosesinTable2areperformedusingthetimeseriesfrommeasurementpoint1.Diagnosisresultsusingtheothermea-surementpointsareconducted,andsimilarperformanceim-provementisobserved.However,thediagnosisresultsarenotpresentedbecauseofspacelimitations.Asmentionedearlier,thelinearprojectionmaynotbetheoptimalprojectioninthisexamplebecausetheordersoftwoclasscovariancematrices(onefromtheundamagedcaseandtheotherfromeachdam-agelevel)arequitedifferent.Intheory,thequadraticprojec-tionistheoptimaloneinasenseofminimizingtheerrorofmisclassification.However,nosignificantperformancediffer-encebetweenlinearandquadraticprojectionsisobservedinthisexample(Table2).False-PositiveAlarmTestingWhileitisdesirabletohavefeaturessensitivetodamageoccurrence,themonitoringsystemalsoneedstoberobustagainstafalse-positiveindicationofdamage.Afalse-positiveindicationofdamagemeansthatthemonitoringsystemindi-catesdamagealthoughnodamageispresent.ToinvestigatetherobustnessoftheproposedX-barcontrolchartagainstafalse-positivewarningofdamage,twoseparatetestsarede-signed.Inthefirsttest,thetimehistoriesobtainedfromtheundam-agedstateoftheteststructurearedividedintotwoparts.Thefirsthalfofthetimeseriesisemployedtoconstructthecontrollimits,andthefalse-positivetestingiscarriedoutusingthesecondhalfofthetimeseries.Notethattheoriginaltimeseriesare8-slongwith8,192timepoints,andeachhalfofthetimeseriesis4-slongwith4,096points.Halfofthetimeseriesisfurtherdividedinto256setsof16-pointtimewindows,andAR(3)isagainfittoeachtimewindowproducing256setsofARcoefficients.Next,asmentionedbefore,fourconsecutiveARcoefficientsaregroupedtogetherresultingin64sampleswithsubgroupsize4.Fig.3(a)showstheconstructionofthecontrollimitsusingthefirsthalfofthetimeseries,andthefluctuationofthefeaturesextractedfromthefirsthalftimeseriesareplottedtogether.Fig.3(b)presentsthefalse-positivetestingusingthesecondhalfofthetimeseries.JOURNALOFSTRUCTURALENGINEERING/NOVEMBER2000/1361ofTable2andmuchbetterthanthoseofTable1.Thatis,PCAcondensesalltimeseriesinformationthatisspatiallydistrib-utedalongthecolumnandsuccessfullyidentifiesallfivedam-agecases.SUMMARYANDDISCUSSIONFIG.5.X-BarControlChartofARCoefficientsafterPCAofAllMeasurementPointsandLinearProjectionTABLE3.DamageDiagnosisResultsafterPCAandLinear/QuadraticProjectionsDamageLevelProjectionLinearQuadratic01/128a(0.78)1/128(0.78)17/128(5.47)7/128(5.47)2127/128(99.22)126/128(98.44)3128/128(100.0)127/128(99.22)4120/128(93.75)121/128(94.53)5120/128(93.75)124/128(96.88)transformed1Dfeaturedata.Third,therobustnessofthepro-posedapproachagainstafalse-positiveindicationofdamageisdemonstratedusingtwoseparatetimehistoriesobtainedfromtheinitialteststructure.Finally,PCAiscarriedoutonallresponsetimeseriesforspatialdimensionalityreductionpriortofeatureextraction.Thatis,alltimeseriesfrommultiplemeasurementpointsareprojectedontothefirstprincipalcom-ponentofthetimeseriescovariancematrix,andthesubse-quentfeatureselectionisperformedusingthiscompressedtimeseries.TheprojectiontechniquesimprovedtheperformanceofcontrolchartanalysiscomparedtothedamagediagnosisusingtheindividualARcoefficient.WhentheprojectiontechniquesandPCAarecombined,thecontrolchartssuccessfullyindi-catedthesystemresponseanomalyforallinvestigateddamagelevelsbyshowingastatisticallysignificantnumberofoutliersoutsidethecontrollimits.Itshouldalsobenotedthatthisstudyiscarriedoutinanunsupervisedlearningmode.Al-thoughtheprojectiontechniquesrequiretwoseparatedatasets,noclaimismadethattheyarefromtwodifferentclasses.Itisonlyassumedthatthereisonedatasetfromtheundam-agedclassandthattheotherdatasetisfromanunknownclass.Theabilitytoapplyunsuperviseddamagedetectiontechniquestocivilengineeringstructuresisveryimportantbecausere-sponsedatafromasimilardamagedsystemarerarelyavail-able.Ingeneral,theobservationofalargenumberofoutliersinthecontrolchartdoesnotnecessarilyindicatethatthestructureisdamaged,butonlythatthesystemhasvaried,causingastatisticallysignificantchangeinitsvibrationresponse.Thisvariabilitycanbecausedbyavarietyofenvironmentalandoperationalconditionsthatthesystemissubjectedto.Becausetheinfluenceofoperationalandenvironmentalfactorsonthedynamiccharacteristicsoftheteststructureisminimalforthepresentedlaboratorytest,thedeteriorationofthestructurewasassumedtobethemaincauseoftheabnormalchangesofthesystem.However,operationalandenvironmentalconditionssuchaswind,humidity,intensity,andfrequencyoftrafficloadingshouldbetakenintoaccountforapplicationstoinsitucivilengineeringinfrastructures.Anovelapproachtodatanor-malization,combiningARandARwithexogenousinputs(ARX)techniques,isdevelopedtoexplicitlyincorporatetheenvironmentalandoperationalconditionsintothestatisticalpatternrecognitionparadigmsothattheeffectofdamageonthevibrationresponsecouldbediscriminatedfromtheseef-fectsandtopreventtheoperationalandenvironmentalvaria-bilityfromcausingf

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论