




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二、最大值与最小值问题一、函数的极值及其求法第五节函数的极值与最大值最小值
第三章高数函数的极值与最大最小值定义:在其中当时,(1)则称为的极大值点
,称为函数的极大值
;(2)则称为的极小值点
,称为函数的极小值
.极大值点与极小值点统称为极值点
.一、函数的极值及其求法高数函数的极值与最大最小值注意:为极大值点为极小值点不是极值点2)对常见函数,极值可能出现在导数为
0
或
不存在的点.1)函数的极值是函数的局部性质.例如,为极大值点,是极大值是极小值为极小值点,函数高数函数的极值与最大最小值定理1
(极值第一判别法)且在空心邻域内有导数,(1)“左正右负”,(2)“左负右正”,(自证)点击图中任意处动画播放\暂停高数函数的极值与最大最小值例1.求函数的极值.解:1)求导数2)求极值可疑点令得令得3)列表判别是极大值点,其极大值为是极小值点,其极小值为高数函数的极值与最大最小值定理2(极值第二判别法)二阶导数,且则在点取极大值;则在点取极小值.证:(1)存在由第一判别法知(2)类似可证.高数函数的极值与最大最小值例2.求函数的极值.解:
1)求导数2)求驻点令得驻点3)判别因故为极小值;又故需用第一判别法判别.高数函数的极值与最大最小值定理3
(判别法的推广)则:数,且1)当为偶数时,是极小点;是极大点.2)当为奇数时,为极值点,且不是极值点.当充分接近时,上式左端正负号由右端第一项确定,故结论正确.证:利用在点的泰勒公式,可得高数函数的极值与最大最小值例如
,
例2中所以不是极值点.极值的判别法(定理1~
定理3)都是充分的.说明:当这些充分条件不满足时,不等于极值不存在.例如:为极大值,但不满足定理1~定理3的条件.高数函数的极值与最大最小值二、最大值与最小值问题则其最值只能在极值点或端点处达到.求函数最值的方法:(1)求在内的极值可疑点(2)
最大值最小值高数函数的极值与最大最小值特别:
当在内只有一个极值可疑点时,
当在上单调时,最值必在端点处达到.若在此点取极大值,则也是最大值.(小)
对应用问题,有时可根据实际意义判别求出的可疑点是否为最大值点或最小值点.(小)高数函数的极值与最大最小值例3.求函数在闭区间上的最大值和最小值.解:
显然且故函数在取最小值0;在及取最大值5.高数函数的极值与最大最小值因此也可通过例3.求函数说明:求最值点.与最值点相同,由于令(自己练习)在闭区间上的最大值和最小值.高数函数的极值与最大最小值(k为某常数)例4.铁路上AB段的距离为100km,工厂C
距A处20AC⊥
AB,要在AB
线上选定一点D
向工厂修一条已知铁路与公路每公里货运为使货物从B运到工
20解:
设则令得又所以为唯一的极小值点,故AD=15km时运费最省.总运费厂C的运费最省,从而为最小值点,问D点应如何取?km,公路,价之比为3:5,高数函数的极值与最大最小值例5.
把一根直径为
d
的圆木锯成矩形梁,问矩形截面的高h
和
b
应如何选择才能使梁的抗弯截面模量最大?解:由力学分析知矩形梁的抗弯截面模量为令得从而有即由实际意义可知,所求最值存在,驻点只一个,故所求结果就是最好的选择.高数函数的极值与最大最小值用开始移动,例6.
设有质量为5kg
的物体置于水平面上,受力F
作解:
克服摩擦的水平分力正压力即令则问题转化为求的最大值问题.设摩擦系数问力F与水平面夹角
为多少时才可使力F的大小最小?高数函数的极值与最大最小值令解得而因而F
取最小值.解:即令则问题转化为求的最大值问题.高数函数的极值与最大最小值清楚(视角
最大)?观察者的眼睛1.8m,例7.
一张1.4m高的图片挂在墙上,它的底边高于解:
设观察者与墙的距离为xm,则令得驻点根据问题的实际意义,观察者最佳站位存在,唯一,驻点又因此观察者站在距离墙2.4m
处看图最清楚.问观察者在距墙多远处看图才最高数函数的极值与最大最小值存在一个取得最大利润的生产水平?如果存在,找出它来.售出该产品x千件的收入是例8.
设某工厂生产某产品x千件的成本是解:售出x千件产品的利润为问是否故在x2=3.414千件处达到最大利润,而在x1=0.586千件处发生局部最大亏损.高数函数的极值与最大最小值说明:在经济学中称为边际成本称为边际收入称为边际利润由此例分析过程可见,在给出最大利润的生产水平上即边际收入=边际成本(见右图)成本函数收入函数即收益最大亏损最大高数函数的极值与最大最小值内容小结1.连续函数的极值(1)极值可疑点:使导数为0或不存在的点(2)第一充分条件过由正变负为极大值过由负变正为极小值(3)第二充分条件为极大值为极小值(4)判别法的推广定理3定理3高数函数的极值与最大最小值最值点应在极值点和边界点上找;应用题可根据问题的实际意义判别.思考与练习2.连续函数的最值1.
设则在点a
处().的导数存在,取得极大值;取得极小值;的导数不存在.B提示:
利用极限的保号性高数函数的极值与最大最小值2.
设在的某邻域内连续,且则在点处(A)不可导;(B)可导,且(C)取得极大值;(D)取得极小值.D提示:
利用极限的保号性.高数函数的极值与最大最小值3.
设是方程的一个解,若且则在(A)取得极大值;(B)取得极小值;(C)在某邻域内单调增加;(D)在某邻域内单调减少.提示:A高数函数的极值与最大最小值作业P1621(5),(9);2;3;5;10;14;15
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届河南省新乡一中等四校重点中学高考仿真卷化学试卷含解析
- 湖北省黄冈、襄阳市2025届高三第二次模拟考试化学试卷含解析
- 开展慢阻肺治疗护理案例
- 急诊科理论考试题含答案
- 大鱼海棠线描课件
- 弘扬安全文化
- 湖北省武汉市常青第一中学2025年高三下学期联考化学试题含解析
- 2025年LNG加气站设备项目合作计划书
- 安徽省阜阳市阜南县安徽省阜南县第三中学2024-2025学年高二下学期3月月考生物学试题(含答案)
- 江苏省南大附中2025届高考仿真卷化学试题含解析
- 2025年各地低空经济政策汇编
- 希沃白板5考题及答案
- 邢台2025年河北邢台市高层次人才引进1025人笔试历年参考题库附带答案详解
- 第三单元 圆柱与圆锥 单元测试(含答案)2024-2025学年六年级下册数学人教版
- XX乡镇履职事项清单表(1356项)
- 2025年共青团入团考试测试题库及答案
- 2021年同等学力申硕《临床医学》试题真题及答案
- 地铁保安服务投标方案(技术方案)
- 《企业研发费用税前加计扣除政策解读与应用课件》
- 2025年湖北国土资源职业学院单招职业技能测试题库及答案一套
- 七年级数学下册 第8章 单元测试卷(苏科版 2025年春)
评论
0/150
提交评论