版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若直线与圆的两个交点关于直线对称,则,的直线分别为()A., B.,C., D.,2.已知点A(2,0)和点B(﹣4,2),则|AB|=()A. B.2C. D.23.设.若存在,使得,则的最小值是()A.2 B.C.3 D.4.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定5.空间直角坐标系中,已知点,则线段的中点坐标为A. B.C. D.6.若直线的倾斜角为,且经过点,则直线的方程是A. B.C. D.7.若幂函数的图像经过点,则A.1 B.2C.3 D.48.在四面体的四个面中,是直角三角形的至多有A.0个 B.2个C.3个 D.4个9.如图,在下列四个正方体中,、为正方体两个顶点,、、为所在棱的中点,则在这四个正方体中,直线与平面不平行的是()A. B.C. D.10.已知,则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a11.设函数满足,的零点为,则下列选项中一定错误的是()A. B.C. D.12.已知是定义在上的奇函数,且,若对任意,都有成立,则的值为()A.2022 B.2020C.2018 D.0二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数若方程恰有三个实数根,则实数的取值范围是_______.14.设奇函数在上是增函数,且,若对所有的及任意的都满足,则的取值范围是__________15.已知扇形的圆心角为,其弧长是其半径的2倍,则__________16.已知函数(为常数)是奇函数.(1)求的值与函数的定义域.(2)若当时,恒成立.求实数的取值范围.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知圆经过,两点,且圆心在直线上()求圆的方程()过的直线与圆相交于,且,求直线的方程18.设函数,将该函数的图象向左平移个单位长度后得到函数的图象,函数的图象关于y轴对称.(1)求的值,并在给定的坐标系内,用“五点法”列表并画出函数在一个周期内的图象;(2)求函数的单调递增区间;(3)设关于x的方程在区间上有两个不相等的实数根,求实数m的取值范围.19.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产百台的生产成本为万元(总成本固定成本生产成本).销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润销售收入总成本);(2)工厂生产多少台产品时,可使盈利最多?20.提高过江大桥的车辆通行的车辆通行能力可改善整个城市的交通状况,在一般情况下大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,就会造成堵塞,此时车流速度为0:当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数(1)当时,求函数的表达式:(2)如果车流量(单位时间内通过桥上某或利点的车辆数)(单位:辆/小时)那么当车流密度为多大时,车流量可以达到最大,并求出最大值,(精确到1辆/小时)21.某学生用“五点法”作函数的图象时,在列表过程中,列出了部分数据如表:0x21求函数的解析式,并求的最小正周期;2若方程在上存在两个不相等的实数根,求实数m的取值范围22.已知集合,(1)当时,求;(2)若,求a的取值范围;
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】由圆的对称性可得过圆的圆心且直线与直线垂直,从而可求出.【详解】因为直线与圆的两个交点关于直线对称,故直线与直线垂直,且直线过圆心,所以,,所以,.故选:A【点睛】本题考查直线方程的求法,注意根据圆的对称性来探求两条直线的位置关系以及它们满足的某些性质,本题属于基础题.2、D【解析】由平面两点的距离公式计算可得所求值.【详解】由点A(2,0)和点B(﹣4,2),所以故选:D【点睛】本题考查平面上两点间的距离,直接用平面上两点间的距离公式解决,属于基础题.3、D【解析】由题设在上存在一个增区间,结合、且,有必为的一个子区间,即可求的范围.【详解】由题设知:,,又,所以在上存在一个增区间,又,所以,根据题设知:必为的一个子区间,即,所以,即的最小值是.故选:D.【点睛】关键点点睛:结合题设条件判断出必为的一个子区间.4、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D5、A【解析】点,由中点坐标公式得中得为:,即.故选A.6、B【解析】直线l的斜率等于tan45°=1,由点斜式求得直线l的方程为y-0=,即故选:B7、B【解析】由题意可设,将点代入可得,则,故选B.8、D【解析】作出图形,能够做到PA与AB,AC垂直,BC与BA,BP垂直,得解【详解】如图,PA⊥平面ABC,CB⊥AB,则CB⊥BP,故四个面均为直角三角形故选D【点睛】本题考查了四面体的结构与特征,考查了线面的垂直关系,属于基础题.9、D【解析】利用线面平行判定定理可判断A、B、C选项的正误;利用线面平行的性质定理可判断D选项的正误.【详解】对于A选项,如下图所示,连接,在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于B选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于C选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、中点,则,,平面,平面,平面;对于D选项,如下图所示,连接交于点,连接,连接交于点,若平面,平面,平面平面,则,则,由于四边形为正方形,对角线交于点,则为的中点,、分别为、的中点,则,且,则,,则,又,则,所以,与平面不平行;故选:D.【点睛】判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(,,),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(,).10、B【解析】结合指数函数、幂函数的单调性确定正确选项.【详解】在上递增,在上递增..故选:B11、C【解析】根据函数的解析式,结合零点的存在定理,进行分类讨论判定,即可求解.【详解】由题意,函数的定义域为,且的零点为,即,解得,又因为,可得中,有1个负数、两个正数,或3个都负数,若中,有1个负数、两个正数,可得,即,根据零点的存在定理,可得或;若中,3个都是负数,则满足,即,此时函数的零点.故选:C.12、D【解析】利用条件求出的周期,然后可得答案.【详解】因为是定义在上的奇函数,且,所以,所以,所以即的周期为4,所以故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】令f(t)=2,解出t,则f(x)=t,讨论k的符号,根据f(x)的函数图象得出t的范围即可【详解】解:令f(t)=2得t=﹣1或t(k≠0)∵f(f(x))﹣2=0,∴f(f(x))=2,∴f(x)=﹣1或f(x)(k≠0)(1)当k=0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,即f(f(x))﹣2=0无解,不符合题意;(2)当k>0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,f(x)无解,即f(f(x))﹣2=0无解,不符合题意;(3)当k<0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1有1解,∵f(f(x))﹣2=0有3解,∴f(x)有2解,∴1,解得﹣1<k综上,k的取值范围是(﹣1,]故答案为(﹣1,]【点睛】本题考查了函数零点个数与函数图象的关系,数形结合思想,属于中档题14、【解析】由题意得,又因为在上是增函数,所以当,任意的时,,转化为在时恒成立,即在时恒成立,即可求解.【详解】由题意,得,又因为在上是增函数,所以当时,有,所以在时恒成立,即在时恒成立,转化为在时恒成立,所以或或解得:或或,即实数的取值范围是【点睛】本题考查函数的恒成立问题的求解,求解的关键是把不等式的恒成立问题进行等价转化,考查分析问题和解答问题的能力,属于中档试题.15、-1【解析】由已知得,所以则,故答案.16、(1),定义域为或;(2).【解析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域;(2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果.【详解】(1)因为函数是奇函数,所以,所以,即,所以,令,解得或,所以函数的定义域为或;(2),当时,所以,所以.因为,恒成立,所以,所以的取值范围是.【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)x=2或15x﹣8y﹣30=0【解析】(1)由圆心C在直线2x﹣y﹣2=0上,可设圆C的圆心为(a,2a﹣2),半径为r,再由圆C过点A(1,4),B(3,6)两点,列关于a,r的方程组,求解可得a,r的值,则圆C的方程可求;(2)当直线l的斜率不存在时,直线方程为x=2,求得M,N的坐标,可得|MN|=2,满足题意;当直线l的斜率不存在时,设直线l的方程为y=k(x﹣2),则kx﹣y﹣2k=0,由|MN|=2,可得圆心到直线的距离为1,由点到直线的距离公式列式求得k值,则直线l的方程可求【详解】解:(1)∵圆心C在直线2x﹣y﹣2=0上,∴设圆C的圆心为(a,2a﹣2),半径为r,又∵圆C过点A(1,4),B(3,6)两点,∴,解得,则圆C的方程为(x﹣3)2+(y﹣4)2=4;(2)当直线l的斜率不存在时,直线方程为x=2,联立,解得M(2,4),N(2,4),此时|MN|;当直线l的斜率存在时,设直线l的方程为y=k(x﹣2),则kx﹣y﹣2k=0,∵|MN|=2,∴圆心到直线的距离为d,解得k,则直线l的方程为15x﹣8y﹣30=0,综上,直线l的方程为x=2或15x﹣8y﹣30=0【点睛】本题考查圆的方程的求法,考查直线与圆位置关系的应用,考查垂径定理的应用,是中档题18、(1),图象见解析;(2)(3)【解析】(1)化简解析式,通过三角函数图象变换求得,结合关于轴对称求得,利用五点法作图即可;(2)利用整体代入法求得的单调递增区间.(3)化简方程,利用换元法,结合一元二次方程根的分布求得的取值范围.【小问1详解】.所以,将该函数的图象向左平移个单位后得到函数,则,该函数的图象关于轴对称,可知该函数为偶函数,故,,解得,.因为,所以得到.所以函数,列表:000作图如下:【小问2详解】由函数,令,,解得,,所以函数的单调递增区间为【小问3详解】由(1)得到,化简得,令,,则.关于的方程,即,解得,.当时,由,可得;要使原方程在上有两个不相等的实数根,则,解得.故实数的取值范围为.19、(1)(2)当工厂生产百台时,可使赢利最大为万元【解析】(1)先求出,再根据求解;(2)先求出分段函数每一段的最大值,再比较即得解.【详解】解:(1)由题意得,(2)当时,函数递减,(万元)当时,函数,当时,有最大值为(万元)所以当工厂生产百台时,可使赢利最大为万元【点睛】本题主要考查函数的解析式的求法,考查分段函数的最值的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1);(2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333/小时..【解析】详解】试题分析:本题考查函数模型在实际中的应用以及分段函数最值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 叉车租借协议书
- 货样买卖契约合同
- 合法的药品代理合同格式范文
- 安装安全协议书范本
- 单位房屋租赁协议范文
- 工程项目管理课程设计指导书09建管
- 锂离子电池行业发展趋势
- 山东省潍坊市部分学校2023-2024学年高一下学期期末模拟试题英语
- 辽宁省名校联盟2024-2025学年高二上学期第一次月考生物试卷
- 高考总复习语文分册2第1板块第5章第1节体验高考真题探知命题规律
- 2023年职业技能:平版制版工技术及理论知识考试题附含答案
- 北京市朝阳区2023-2024学年四年级上学期期末英语试题
- 如何做好工程项目策划
- 中法教育比较
- 中建测评2024二测题库及答案
- 慢性肾脏病慢病管理
- 团员积极分子培训课件
- 讲座《如何备好一节数学课》(青年教师年月培训)包新华课件
- 液氨产生颜色的原因及解决措施
- 研究小米企业的环境波特五力模型进行分析
- 初中数学科普读物
评论
0/150
提交评论