版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,那么角的终边落在A.第一象限 B.第二象限C.第三象限 D.第四象限2.已知直线和互相平行,则实数等于()A.或3 B.C. D.1或3.已知实数,满足,,则的最大值为()A. B.1C. D.24.不等式的解集为,则()A. B.C. D.5.如果,那么A. B.C. D.6.的值是A. B.C. D.7.的零点所在的一个区间为()A. B.C. D.8.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.29.三个数,,的大小顺序是A. B.C. D.10.满足的集合的个数为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则________.12.若,则_________13.在内不等式的解集为__________14.已知函数若关于的方程有5个不同的实数根,则的取值范围为___________.15.已知函数f(x)=lg(x2+2ax-5a)在[2,+∞)上是增函数,则a的取值范围为______16.已知tanα=3,则sinα(cosα-sinα)=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数满足,且.(1)求函数在区间上的值域;(2)当时,函数与的图像没有公共点,求实数的取值范围.18.目前,"新冠肺炎"在我国得到了很好的遏制,但在世界其他一些国家还大肆流行.因防疫需要,某学校决定对教室采用药熏消毒法进行消毒,药熏开始前要求学生全部离开教室.已知在药熏过程中,教室内每立方米空气中的药物含量(毫克)与药熏时间(小时)成正比;当药熏过程结束,药物即释放完毕,教室内每立方米空气中的药物含量(毫克)达到最大值.此后,教室内每立方米空气中的药物含量(毫克)与时间(小时)的函数关系式为(为常数).已知从药熏开始,教室内每立方米空气中的药物含量(毫克)关于时间(小时)的变化曲线如图所示.(1)从药熏开始,求每立方米空气中的药物含量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的药物含量不高于0.125毫克时,学生方可进入教室,那么从药熏开始,至少需要经过多少小时后,学生才能回到教室?19.已知函数,.(1)若关于的不等式的解集为,当时,求的最小值;(2)若对任意的、,不等式恒成立,求实数的取值范围20.(1)计算:lg25+lg2•lg50+lg22(2)已知=3,求的值21.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由根据三角函数在各象限的符号判断可能在的象限,再利用两角和的正弦公式及三角函数的图象由求出的范围,两范围取交集即可.【详解】,在第二或第三象限,,即,或,解得或,又在第二或第三象限,在第三象限.故选:C【点睛】本题考查三角函数值在各象限的符号、正弦函数的图象与性质,属于基础题.2、A【解析】由两直线平行,得到,求出,再验证,即可得出结果.详解】∵两条直线和互相平行,∴,解得或,若,则与平行,满足题意;若,则与平行,满足题意;故选:A3、C【解析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值进行求解【详解】由,得,令,则,因为,所以,即,所以的最大值为,故选:C4、A【解析】由不等式的解集为,得到是方程的两个根,由根与系数的关系求出,即可得到答案【详解】由题意,可得不等式的解集为,所以是方程的两个根,所以可得,,解得,,所以,故选:A5、D【解析】:,,即故选D6、B【解析】由余弦函数的二倍角公式把等价转化为,再由诱导公式进一步简化为,由此能求出结果详解】,故选B【点睛】本题考查余弦函数的二倍角公式的应用,解题时要认真审题,仔细解答,注意诱导公式的灵活运用,属于基础题.7、A【解析】根据零点存在性定理分析判断即可【详解】因为在上单调递增,所以函数至多有一个零点,因为,,所以,所以的零点所在的一个区间为,故选:A8、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值9、A【解析】由指数函数和对数函数单调性得出范围,从而得出结果【详解】,,;故选A【点睛】本题考查指数函数和对数函数的单调性,熟记函数性质是解题的关键,是基础题.10、B【解析】列举出符合条件的集合,即可得出答案.【详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【点睛】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,根据三角函数的诱导公式进行转化求解即可.详解】,,则,故答案为:.12、【解析】先求得,然后求得.【详解】,.故答案为:13、【解析】利用余弦函数的性质即可得到结果.【详解】∵,∴,根据余弦曲线可得,∴.故答案为:14、【解析】根据函数的解析式作出函数的大致图像,再将整理变形,然后将方程的根的问题转化为函数图象的交点问题解决.【详解】由题意得,即或,的图象如图所示,关于的方程有5个不同的实数根,则或,解得,故答案为:15、【解析】利用对数函数的定义域以及二次函数的单调性,转化求解即可【详解】解:函数f(x)=lg(x2+2ax﹣5a)在[2,+∞)上是增函数,可得:,解得a∈[﹣2,4)故答案为[﹣2,4)【点睛】本题考查复合函数的单调性的应用,考查转化思想以及计算能力16、【解析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)通过已知得到方程组,解方程组即得二次函数的解析式,再利用二次函数的图象求函数的值域得解;(2)求出,等价于,求出二次函数最小值即得解.【小问1详解】解:设、∴,∴,∴,,又,∴,∴.∵对称轴为直线,,,,∴函数的值域.【小问2详解】解:由(1)可得:∵直线与函数的图像没有公共点∴,当时,∴,∴.18、(1);(2)0.8小时.【解析】(1)时,设,由最高点求出,再依据最高点求出参数,从而得函数解析式;(2)解不等式可得结论【详解】解:(1)依题意,当时,可设,且,解得又由,解得,所以(2)令,即,得,解得,即至少需要经过后,学生才能回到教室.19、(1)(2)【解析】(1)根据二次不等式的解集得,再根据基本不等式求解即可;(2)根据题意将问题转化为在恒成立,再令,(),分类讨论即可求解.【详解】(1)由关于的不等式的解集为,所以知∴又∵,∴,取“”时∴即的最小值为,取“”时(2)∵时,,∴根据题意得:在恒成立记,()①当时,由,∴②当时,由,∴③当时,由,综上所述,的取值范围是【点睛】本题的第二问中关键是采用动轴定区间的方法进行求解,即讨论对称轴在定区间的左右两侧以及对称轴在定区间上的变化情况,从而确定该函数的最值.20、(1)2;(2)9.【解析】(1)利用对数的性质及运算法则直接求解(2)利用平方公式得,x+x﹣1=()2﹣2=7,x2+x﹣2=(x+x﹣1)2﹣2=49﹣2=47,代入求解【详解】(1)lg25+lg2•lg50+lg22=lg52+lg2(lg5+1)+lg22=2lg5+lg2•lg5+lg2+lg22=2lg5+lg2+lg2(lg5+lg2)=2(lg5+lg2)=2;(2)由,得,即x+2+x-1=9∴x+x-1=7两边再平方得:x2+2+x-2=49,∴x2+x-2=47∴=【点睛】本题考查了有理指数幂的运算,考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 叉车租借协议书
- 货样买卖契约合同
- 合法的药品代理合同格式范文
- 安装安全协议书范本
- 单位房屋租赁协议范文
- 工程项目管理课程设计指导书09建管
- 锂离子电池行业发展趋势
- 山东省潍坊市部分学校2023-2024学年高一下学期期末模拟试题英语
- 辽宁省名校联盟2024-2025学年高二上学期第一次月考生物试卷
- 高考总复习语文分册2第1板块第5章第1节体验高考真题探知命题规律
- 2023年职业技能:平版制版工技术及理论知识考试题附含答案
- 北京市朝阳区2023-2024学年四年级上学期期末英语试题
- 如何做好工程项目策划
- 中法教育比较
- 中建测评2024二测题库及答案
- 慢性肾脏病慢病管理
- 团员积极分子培训课件
- 讲座《如何备好一节数学课》(青年教师年月培训)包新华课件
- 液氨产生颜色的原因及解决措施
- 研究小米企业的环境波特五力模型进行分析
- 初中数学科普读物
评论
0/150
提交评论