版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若函数(,且)在上的最大值为4,且函数在上是减函数,则实数的取值范围为()A. B.C. D.2.已知直线:与:平行,则的值是().A.或 B.或C.或 D.或3.对于直线的截距,下列说法正确的是A.在y轴上的截距是6 B.在x轴上的截距是6C.在x轴上的截距是3 D.在y轴上的截距是-34.已知幂函数的图象过,则下列求解正确的是()A. B.C. D.5.给出下列四个命题:①底面是正多边形的棱柱是正棱柱;②四棱柱、四棱台、五棱锥都是六面体;③所有棱长相等的棱柱一定是直棱柱;④直角三角形绕其一条边所在的直线旋转一周形成的几何体是圆锥其中正确的命题个数是()A.0 B.1C.2 D.36.已知,,,则()A. B.C. D.27.将函数的图象向左平移个单位后得到的图象关于轴对称,则正数的最小值是()A. B.C. D.8.将函数的图象向右平移个单位,得到函数的图象,若在上为增函数,则的最大值为A B.C. D.9.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.10.若函数的零点所在的区间为,则整数的值为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.写出一个能说明“若函数为奇函数,则”是假命题的函数:_________.12.___________,__________13.已知角的终边过点(1,-2),则________14.已知点是角终边上一点,且,则的值为__________.15.已知向量,,若,,,则的值为__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知集合,或(1)若,求a取值范围;(2)若,求a的取值范围17.考虑到高速公路行车安全需要,一般要求高速公路的车速(公里/小时)控制在范围内.已知汽车以公里/小时的速度在高速公路上匀速行驶时,每小时的油耗(所需要的汽油量)为升,其中为常数,不同型号汽车值不同,且满足.(1)若某型号汽车以120公里/小时的速度行驶时,每小时的油耗为升,欲使这种型号的汽车每小时的油耗不超过9升,求车速的取值范围;(2)求不同型号汽车行驶100千米的油耗的最小值.18.如图,在平面直角坐标系xOy中,角θ的终边与单位圆交于点P.(1)若点P的横坐标为-35,求cos(2)若将OP绕点O逆时针旋转π4,得到角α(即α=θ+π4),若tanα=19.已知函数的图象在定义域上连续不断.若存在常数,使得对于任意的,恒成立,称函数满足性质.(1)若满足性质,且,求的值;(2)若,试说明至少存在两个不等的正数,同时使得函数满足性质和.(参考数据:)(3)若函数满足性质,求证:函数存在零点.20.已知函数(1)若的定义域为,求实数的值;(2)若的定义域为,求实数的取值范围21.2021年起,辽宁省将实行“3+1+2”高考模式,为让学生适应新高考的赋分模式某校在一次校考中使用赋分制给高三年级学生的化学成绩进行赋分,具体赋分方案如下:先按照考生原始分从高到低按比例划定A、B、C、D、E共五个等级,然后在相应赋分区间内利用转换公式进行赋分A等级排名占比15%,赋分分数区间是86-100;B等级排名占比35%,赋分分数区间是71-85;C等级排名占比35%,赋分分数区间是56-70;D等级排名占比13%,赋分分数区间是41-55;E等级排名占比2%,赋分分数区间是30-40;现从全年级的化学成绩中随机抽取100名学生的原始成绩(未赋分)进行分析,其频率分布直方图如图所示:(1)求图中a的值;(2)用样本估计总体的方法,估计该校本次化学成绩原始分不少于多少分才能达到赋分后的C等级及以上(含C等级)?(结果保留整数)(3)若采用分层抽样的方法,从原始成绩在[40,50)和[50,60)内的学生中共抽取5人,查看他们的答题情况来分析知识点上的缺漏,再从中选取2人进行调查分析,求这2人中恰有一人原始成绩在[40,50)内的概率.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】由函数(,且)在上的最大值为4,分情况讨论得到,从而可得函数单调递增,而在上是减函数,所以可得,由此可求得的取值范围【详解】当时,函数单调递增,据此可知:,满足题意;当时,函数单调递减,据此可知:,不合题意;故,函数单调递增,若函数在上是减函数,则,据此可得故选:A【点睛】此题考查对数函数的性质,考查指数函数的性质,考查分类讨论思想,属于基础题.2、C【解析】当k-3=0时,求出两直线的方程,检验是否平行;当k-3≠0时,由一次项系数之比相等且不等于常数项之比,求出k的值解:由两直线平行得,当k-3=0时,两直线方程分别为y=-1和y=3/2,显然两直线平行.当k-3≠0时,由,可得k=5.综上,k的值是3或5,故选C3、A【解析】令,得y轴上的截距,令得x轴上的截距4、A【解析】利用幂函数过的点求出幂函数的解析式即可逐项判断正误【详解】∵幂函数y=xα的图象过点(2,),∴2α,解得α,故f(x),即,故选A【点睛】本题考查了幂函数的定义,是一道基础题5、B【解析】利用几何体的结构特征,几何体的定义,逐项判断选项的正误即可【详解】解:①底面是正多边形,侧棱与底面垂直的棱柱是正棱柱;所以①不正确;②四棱柱、四棱台、五棱锥都是六面体;满足多面体的定义,所以②正确;③所有棱长相等的棱柱一定是直棱柱;不满足直棱柱的定义,所以③不正确;④直角三角形绕直角边所在的直线旋转一周形成的几何体是圆锥.所以④不正确;故选:B6、D【解析】利用同角三角函数关系式可求,再应用和角正切公式即求.【详解】∵,,∴,,∴.故选:D.7、A【解析】图象关于轴对称,则其为偶函数,根据三角函数的奇偶性即可求解.【详解】将的图象向左平移个单位后得到,此时图象关于轴对称,则,则,当时,取得最小值故选:A.8、B【解析】由题意可知,由在上为增函数,得,选B.9、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A10、C【解析】结合函数单调性,由零点存在性定理可得解.【详解】由为增函数,且,可得零点所在的区间为,所以.故选:C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、(答案不唯一)【解析】由题意,只需找一个奇函数,0不在定义域中即可.【详解】由题意,为奇函数且,则满足题意故答案为:12、①.##-0.5②.2【解析】根据诱导公式计算即可求出;根据对数运算性质可得【详解】由题意知,;故答案为:13、【解析】由三角函数的定义以及诱导公式求解即可.【详解】的终边过点(1,-2),故答案为:14、【解析】由三角函数定义可得,进而求解即可【详解】由题,,所以,故答案为:【点睛】本题考查由三角函数值求终边上的点,考查三角函数定义的应用15、C【解析】分析:由,,,可得向量与平行,且,从而可得结果.详解:∵,,,∴向量与平行,且,∴.故答案为.点睛:本题主要考查共线向量的坐标运算,平面向量的数量积公式,意在考查对基本概念的理解与应用,属于中档题三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)根据交集的定义,列出关于的不等式组即可求解;(2)由题意,,根据集合的包含关系列出关于的不等式组即可求解;【小问1详解】解:∵或,且,∴,解得,∴a的取值范围为;【小问2详解】解:∵或,且,∴,∴或,即或,∴a的取值范围是.17、(1);(2)当时,该汽车行驶100千米的油耗的最小值为升;当时,该汽车行驶100千米的油耗的最小值为升.【解析】(1)根据题意,可知当时,求出的值,结合条件得出,再结合,即可得出车速的取值范围;(2)设该汽车行驶100千米的油耗为升,得出关于与的函数关系式,通过换元令,则,得出与的二次函数,再根据二次函数的图象和性质求出的最小值,即可得出不同型号汽车行驶100千米的油耗的最小值.【小问1详解】解:由题意可知,当时,,解得:,由,即,解得:,因为要求高速公路的车速(公里/小时)控制在范围内,即,所以,故汽车每小时的油耗不超过9升,求车速的取值范围.【小问2详解】解:设该汽车行驶100千米的油耗为升,则,令,则,所以,,可得对称轴为,由,可得,当时,即时,则当时,;当,即时,则当时,;综上所述,当时,该汽车行驶100千米的油耗的最小值为升;当时,该汽车行驶100千米的油耗的最小值为升.18、(1)15(2)【解析】(1)由三角函数的定义知,cosθ=-35,sin(2)利用公式tanα-β=【详解】(1)∵P在单位圆上,且点P的横坐标为-35,则cosθ=-∴cos(2)由题知α=θ+π4,则θ=α-π【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.19、(1)(2)答案见解析(3)证明见解析【解析】(1)由满足性质可得恒成立,取可求,取可求,取可求,取求,由此可求的值;(2)设满足,利用零点存在定理证明关于的方程至少有两个解,证明至少存在两个不等的正数,同时使得函数满足性质和;(3)分别讨论,,时函数的零点的存在性,由此完成证明.【小问1详解】因为满足性质,所以对于任意的x,恒成立.又因为,所以,,,由可得,由可得,所以,.【小问2详解】若正数满足,等价于,记,显然,,因为,所以,,即.因为的图像连续不断,所以存在,使得,因此,至少存在两个不等的正数,使得函数同时满足性质和.【小问3详解】若,则1即为零点;因为,若,则,矛盾,故,若,则,,,可得.取即可使得,又因为的图像连续不断,所以,当时,函数上存在零点,当时,函数在上存在零点,若,则由,可得,由,可得,由,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,综上,函数存在零点.20、(1);(2)【解析】(1)根据题意,由二次型不等式解集,即可求得参数的取值;(2)根据题意,不等式在上恒成立,即可求得参数范围.【详解】(1)的定义域为,即的解集为,故,解得;(2)的定义域为,即恒成立,当时,,经检验满足条件;当时,解得,综上,【点睛】本题考查由函数的定义域求参数范围,涉及由一元二次不等式的解集求参数值,以及一元二次不等式在上恒成立问题的处理,属综合基础题.21、(1)a0.030;(2)54分;(3).【解析】(1)由各组频率和为1列方程即可得解;(2)由频率分布直方图结合等级达到C及以上所占排名等级占比列方程即可的解;(3)列出所有基本事件及满足要求的基本事件,由古典概型概率公式即可得解.【详解】(1)由题意,(0.0100.0150.015a0.0250.005)101,所以a0.030;(2)由已知等级达到C及以上所占排名等级占比为15%+35%+35%=85%,假设原始分不少于x分可以达到赋分后的C等级及以上,易得,则有(0.0050.0250.0300.015)10(60x)0.0150.85,解得x≈53.33(分),所以原始分不少于54分才能达到赋分后的C等级及以上;(3)由题知得分在[40,50)和[50,60)内的频率分别为0.1和0.15,则抽取的5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 叉车租借协议书
- 货样买卖契约合同
- 合法的药品代理合同格式范文
- 安装安全协议书范本
- 单位房屋租赁协议范文
- 工程项目管理课程设计指导书09建管
- 锂离子电池行业发展趋势
- 山东省潍坊市部分学校2023-2024学年高一下学期期末模拟试题英语
- 辽宁省名校联盟2024-2025学年高二上学期第一次月考生物试卷
- 高考总复习语文分册2第1板块第5章第1节体验高考真题探知命题规律
- 2023年职业技能:平版制版工技术及理论知识考试题附含答案
- 北京市朝阳区2023-2024学年四年级上学期期末英语试题
- 如何做好工程项目策划
- 中法教育比较
- 中建测评2024二测题库及答案
- 慢性肾脏病慢病管理
- 团员积极分子培训课件
- 讲座《如何备好一节数学课》(青年教师年月培训)包新华课件
- 液氨产生颜色的原因及解决措施
- 研究小米企业的环境波特五力模型进行分析
- 初中数学科普读物
评论
0/150
提交评论