


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,2.如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,,则异面直线与所成角的余弦值为()A. B. C. D.3.已知是等差数列的前项和,,,则()A.85 B. C.35 D.4.已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为()A. B. C. D.5.已知正项数列满足:,设,当最小时,的值为()A. B. C. D.6.已知中,角、所对的边分别是,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分必要条件7.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.8.如图,是圆的一条直径,为半圆弧的两个三等分点,则()A. B. C. D.9.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.4C. D.510.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是().A. B. C. D.11.已知数列中,,(),则等于()A. B. C. D.212.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.14.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.15.已知数列满足:,,若对任意的正整数均有,则实数的最大值是_____.16.若,则的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知向量,.(1)求的最小正周期;(2)若的内角的对边分别为,且,求的面积.18.(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求实数的值.19.(12分)在中,角的对边分别为,已知.(1)求角的大小;(2)若,求的面积.20.(12分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.21.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.(1)求异面直线AC与BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.22.(10分)在一次电视节目的答题游戏中,题型为选择题,只有“A”和“B”两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记“该选手答完n道题后总得分为”.(1)当时,记,求的分布列及数学期望;(2)当,时,求且的概率.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.2.B【答案解析】
建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【题目详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【答案点睛】本小题主要考查异面直线所成的角的求法,属于中档题.3.B【答案解析】
将已知条件转化为的形式,求得,由此求得.【题目详解】设公差为,则,所以,,,.故选:B【答案点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.4.A【答案解析】
根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【题目详解】解:设点到平面的距离为,因为是中点,所以到平面的距离为,三棱锥的体积,解得,作平面,垂足为的外心,所以,且,所以在中,,此为球的半径,.故选:A.【答案点睛】本题考查球的表面积,考查点到平面的距离,属于中档题.5.B【答案解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【题目详解】由得,即,,当且仅当时取得最小值,此时.故选:B【答案点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.6.D【答案解析】
由大边对大角定理结合充分条件和必要条件的定义判断即可.【题目详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“”是“”的充分必要条件.故选:D.【答案点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题.7.B【答案解析】
根据题意,求得函数周期,利用周期性和函数值,即可求得.【题目详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【答案点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.8.B【答案解析】
连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;【题目详解】解:连接、,,是半圆弧的两个三等分点,,且,所以四边形为棱形,.故选:B【答案点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.9.B【答案解析】
还原几何体的直观图,可将此三棱锥放入长方体中,利用体积分割求解即可.【题目详解】如图,三棱锥的直观图为,体积.故选:B.【答案点睛】本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.10.A【答案解析】
作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【题目详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴这个四棱锥中最长棱的长度是.故选.【答案点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.11.A【答案解析】
分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【题目详解】解:∵,(),
,
,
,
,
…,
∴数列是以3为周期的周期数列,
,
,
故选:A.【答案点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.12.B【答案解析】
由,则输出为300,即可得出判断框的答案【题目详解】由,则输出的值为300,,故判断框中应填?故选:.【答案点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.14.-1【答案解析】
由题意,令即可得解.【题目详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【答案点睛】本题考查了复数的概念和运算,属于基础题.15.2【答案解析】
根据递推公式可考虑分析,再累加求出关于关于参数的关系,根据表达式的取值分析出,再用数学归纳法证明满足条件即可.【题目详解】因为,累加可得.若,注意到当时,,不满足对任意的正整数均有.所以.当时,证明:对任意的正整数都有.当时,成立.假设当时结论成立,即,则,即结论对也成立.由数学归纳法可知,对任意的正整数都有.综上可知,所求实数的最大值是2.故答案为:2【答案点睛】本题主要考查了根据数列的递推公式求解参数最值的问题,需要根据递推公式累加求解,同时注意结合参数的范围问题进行分析.属于难题.16.【答案解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【题目详解】由题意,,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值.【答案点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)或【答案解析】
(1)利用平面向量数量积的坐标运算可得,利用正弦函数的周期性即可求解;(2)由(1)可求,结合范围,可求的值,由余弦定理可求的值,进而根据三角形的面积公式即可求解.【题目详解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或当时,由余弦定理得即,解得.此时.当时,由余弦定理得.即,解得.此时.【答案点睛】本题主要考查了平面向量数量积的坐标运算、正弦函数的周期性,考查余弦定理、三角形的面积公式在解三角形中的综合应用,考查了转化思想和分类讨论思想,属于基础题.18.(1),;(2).【答案解析】
(1)将代入求解,由(为参数)消去即可.(2)将(为参数)与联立得,设,两点对应的参数为,,则,,再根据,即,利用韦达定理求解.【题目详解】(1)把代入,得,由(为参数),消去得,∴曲线的直角坐标方程和直线的普通方程分别是,.(2)将(为参数)代入得,设,两点对应的参数为,,则,,由得,所以,即,所以,而,解得.【答案点睛】本题主要考查参数方程、极坐标方程、直角坐标方程的转化和直线参数方程的应用,还考查了运算求解的能力,属于中档题.19.(1);(2)【答案解析】
(1)利用正弦定理边化角,再利用二倍角的正弦公式与正弦的和角公式化简求解即可.(2)由(1)有,根据正弦定理可得,进而求得的值,再根据三角形的面积公式求解即可.【题目详解】(1)由,得,得,由正弦定理得,显然,同时除以,得.所以.所以.显然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【答案点睛】本题主要考查了正余弦定理与面积公式在解三角形中的运用,需要根据题意用正弦定理进行边角互化,再根据三角恒等变换进行化简求解等.属于中档题.20.(1)(2)见解析【答案解析】
(1)因为,可得,即可求得答案;(2)要证对任意恒成立,即证对任意恒成立.设,,当时,,即可求得答案.【题目详解】(1),,,函数在处的切线方程为.(2)要证对任意恒成立.即证对任意恒成立.设,,当时,,,令,解得,当时,,函数在上单调递减;当时,,函数在上单调递增.,,,当时,对任意恒成立,即当时,对任意恒成立.【答案点睛】本题主要考查了求曲线的切线方程和求证不等式恒成立问题,解题关键是掌握由导数求切线方程的解法和根据导数求证不等式恒成立的方法,考查了分析能力和计算能力,属于难题.21.(1).(2).【答案解析】
(1)先根据空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2)分别求得平面BFC1的一个法向量和平面BCC1的一个法向量,再利用面面角的向量方法求解.【题目详解】规范解答(1)因为AB=1,AA1=2,则F(0,0,0),A,C,B,E,所以=(-1,0,0),=记异面直线AC和BE所成角为α,则cosα=|cos〈〉|==,所以异面直线AC和BE所成角的余弦值为.(2)设平面BFC1的法向量为=(x1,y1,z1).因为=,=,则取x1=4,得平面BFC1的一个法向量为=(4,0,1).设平面BCC1的法向量为=(x2,y2,z2).因为=,=(0,0,2),则取x2=得平面BCC1的一个法向量为=(,-1,0),所以cos〈〉==根据图形可知二面角F-BC1-C为锐二面角,所以二面角F-BC1-C的余弦值为.【答案点睛】本题主要考查了空间向量法研究空间中线线角,面面角的求法,还考查了转化化归的思想和运算求解的能力,属于中档题.22.(1)见解析,0(2)【答案解析】
(1)即该选手答完3道题后总得分,可能出现的情况为3道题都
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小自考试题及答案中的设计解析
- 环境保护意识与行动考核试卷
- 旅游线路介绍
- 精防项目管理培训
- 青岛络购物合同范本
- 2025年高考英语复习应用文写作与读后续写精讲精练应用文技巧3:表达的多样与扩充(原卷版)
- 人教版高中物理精讲精练-必修1专题强化二:共点力的动态平衡与临界极值(原卷版)
- 信托与知识产权运营考核试卷
- 端午防踩踏课件
- 2024-2025学年八年级地理上册 1.1疆域教学设计3 (新版)新人教版
- 福建省泉州市泉港区2024年小升初考试数学试卷含解析
- 2024年安徽省高考生物试卷(真题+答案)
- 小学六年级数学奥数题100题附答案(完整版)
- 生物专业英语翻译和单词(专业版)
- NB-T+10131-2019水电工程水库区工程地质勘察规程
- 2024陕西中考数学二轮专题训练 题型四 尺规作图 (含答案)
- 2024年大数据应用及处理技术能力知识考试题库与答案
- 五矿集团准入承诺书
- 《食品标准与法律法规》课件-第二章 我国食品标准体系
- 生物-福建省厦门市2024届高三下学期第四次质量检测考试试题和答案
- 第24课《诗词曲五首-南乡子 登京口北固亭有怀》课件共34张
评论
0/150
提交评论